Hereditary coproporphyria (HCP), an autosomal dominant acute hepatic porphyria, results from mutations in the gene that encodes coproporphyrinogen III oxidase (CPO). HCP (heterozygous or rarely homozygous) patients present with an acute neurovisceral crisis, sometimes associated with skin lesions. Four patients (two families) have been reported with a clinically distinct variant form of HCP. In such patients, the presence of a specific mutation (K404E) on both alleles or associated with a null allele, produces a unifying syndrome in which hematological disorders predominate: 'harderoporphyria'. Here, we report the fifth case (from a third family) with harderoporphyria. In addition, we show that harderoporphyric patients exhibit iron overload secondary to dyserythropoiesis. To investigate the molecular basis of this peculiar phenotype, we first studied the secondary structure of the human CPO by a predictive method, the hydrophobic cluster analysis (HCA) which allowed us to focus on a region of the enzyme. We then expressed mutant enzymes for each amino acid of the region of interest, as well as all missense mutations reported so far in HCP patients and evaluated the amount of harderoporphyrin in each mutant. Our results strongly suggest that only a few missense mutations, restricted to five amino acids encoded by exon 6, may accumulate significant amounts of harderoporphyrin: D400-K404. Moreover, all other type of mutations or missense mutations mapped elsewhere throughout the CPO gene, lead to coproporphyrin accumulation and subsequently typical HCP. Our findings, reinforced by recent crystallographic results of yeast CPO, shed new light on the genetic predisposition to HCP. It represents a first monogenic metabolic disorder where clinical expression of overt disease is dependent upon the location and type of mutation, resulting either in acute hepatic or in erythropoietic porphyria.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddi342DOI Listing

Publication Analysis

Top Keywords

missense mutations
12
human cpo
8
cpo gene
8
clinical expression
8
hereditary coproporphyria
8
acute hepatic
8
hcp patients
8
mutations
6
hcp
6
cpo
5

Similar Publications

Autosomal dominant CDK13-related disease is characterized by congenital heart defects, dysmorphic facial features, and intellectual developmental disorder (CHDFIDD). Heterozygous pathogenic variants, particularly missense variants in the kinase domain, have previously been described as disease causing. Using the determination of a methylation pattern and comparison with an established episignature, we reveal the first hypomorphic variant in the kinase domain of CDK13, leading to a never before described autosomal recessive form of CHDFIDD in a boy with characteristic features.

View Article and Find Full Text PDF

Assessment of various etiological factors for oral squamous cell carcinoma in non-habit patients- a cross sectional case control study.

BMC Oral Health

January 2025

Clinical Genetics Lab, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, 162, Poonamallee High Road, Velappanchavadi, Chennai, Tamil Nadu, 600077, India.

Background: Oral squamous cell carcinoma (OSCC) is one of the most prevalent oral cancers in the world. The major etiological factors are considered to be tobacco and alcohol. However, the etiological factors for non-habit associated oral squamous cell carcinoma (NHOSCC) remains an enigma.

View Article and Find Full Text PDF

Background: Fibrous dysplasia (FD), caused by activating mutations of GNAS, is a skeletal disorder with considerable clinicopathological heterogeneity. Although prevalent mutations such as R201C and R201H dominate in FD, a limited number of rare mutations, including R201S, R201G, and Q227L, have been documented. The scarcity of information concerning these uncommon mutations motivates our investigation, seeking to enhance comprehension of this less-explored subgroup within FD.

View Article and Find Full Text PDF

KNG1 mutations (c.618 T > G and c.1165C > T) cause disruption of the Cys206-Cys218 disulfide bond and truncation of the D5 domain leading to hereditary high molecular weight kininogen deficiency.

Clin Biochem

January 2025

Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, Guangxi, China; Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Hematology, Guangxi Medical University, Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China. Electronic address:

Background: High molecular weight kininogen (HMWK), encoded by the kininogen-1 (KNG1) gene, is a multifunctional glycoprotein closely associated with the initiation of blood coagulation, tumor growth, and other pathological processes.

Objective: We conducted a study on the clinical phenotype, genetic mutations, and molecular pathogenesis of a female patient with uterine leiomyosarcoma, who presented with HMWK deficiency and an isolated prolonged activated partial thromboplastin time (APTT).

Methods: Clinical phenotyping was conducted through APTT mixing studies, quantitative assessments of intrinsic coagulation factor activities, antigen levels of HMWK, and thromboelastography.

View Article and Find Full Text PDF

Comparative genomics analysis of the reason for C heavy-ion irradiation in improving FeO nanoparticle yield of Acidithiobacillus ferrooxidans.

Ecotoxicol Environ Saf

January 2025

Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; Key Laboratory of Low‑carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; Engineering Research Center of Processing and Utilization of Grain By-products, Ministry of Education, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China. Electronic address:

The FeO nanoparticle synthesized by Acidithiobacillus ferrooxidans have a broad practical value, while the low yield limits their commercial application. Herein, we employed a C heavy-ion beam to induce mutagenesis of A. ferrooxidans BYM and successfully screened a mutant BYMT-200 with a 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!