Early, accurate detection of small-cell lung cancer (SCLC), before it becomes systemic, is essential for successful treatment. Fluorescence-based imaging provides safe, sensitive detection of malignancies. Targeted delivery of fluorophores increases sensitivity of endoscopic imaging. We synthesized novel somatostatin analogs, based on backbone cyclic peptides, and conjugated them with fluorescent agents. Nineteen conjugates differing in core peptide, length of alkyl linker and fluorescence moiety (rhodamine and fluorescein) were tested in vitro, using a receptor binding assay, and nine of the more promising conjugates were tested in vivo by fiber-optic spectrofluorimetry and quantitative spectral imaging, on an H69 human SCLC tumor mouse xenograft model. The lead compound showed exceptional tumor/normal tissue ratios, ranging from 9 to 90, and has potential for targeting SCLC overexpressing somatostatin receptors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lungcan.2005.07.009DOI Listing

Publication Analysis

Top Keywords

small-cell lung
8
lung cancer
8
targeting small-cell
4
cancer novel
4
novel fluorescent
4
fluorescent analogs
4
analogs somatostatin
4
somatostatin early
4
early accurate
4
accurate detection
4

Similar Publications

We demonstrate that performing anatomical pulmonary resection by video-assisted thoracoscopic surgery without staplers or energy devices is feasible. This technique is an alternative for surgeons with limited access to expensive technologies.

View Article and Find Full Text PDF

Diagnosis of lung cancer using salivary miRNAs expression and clinical characteristics.

BMC Pulm Med

January 2025

Universal Scientific Education and Research Network (USERN), Tehran, Iran.

Objective: Lung cancer (LC), the primary cause for cancer-related death globally is a diverse illness with various characteristics. Saliva is a readily available biofluid and a rich source of miRNA. It can be collected non-invasively as well as transported and stored easily.

View Article and Find Full Text PDF

A mouse model to assess immunotherapy-related colitis.

Methods Cell Biol

January 2025

Laboratory of Translational Oncology, Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain; Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain. Electronic address:

Combined blockade of the immune checkpoints PD-1 and CTLA-4 has shown remarkable efficacy in patients with melanoma, renal cell carcinoma, non-small-cell lung cancer and mesothelioma, among other tumor types. However, a proportion of patients suffer from serious immune-related adverse events (irAEs). In severe cases, a reduction of the doses or the complete cessation of the treatment is required, limiting the antitumor efficacy of these treatments.

View Article and Find Full Text PDF

CircKIAA0182 Enhances Lung Cancer Progression and Chemoresistance through Interaction with YBX1.

Cancer Lett

January 2025

Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China; Institute of Clinical Pharmacology, Central South University, Changsha 410078, P. R. China. Electronic address:

Lung cancer, particularly non-small cell lung cancer (NSCLC), remains a leading cause of cancer-related mortality. Resistance to platinum-based chemotherapy, such as cisplatin, significantly limits treatment efficacy. Circular RNAs (circRNAs) have emerged as key regulators of cancer progression and chemotherapy resistance due to their stable structure, which protects them from degradation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!