Isotope effects on the enzymatic and nonenzymatic reactions of chorismate.

J Am Chem Soc

Institute for Enzyme Research and Department of Biochemistry, University of Wisconsin, 1710 University Avenue, Madison, Wisconsin 53726, USA.

Published: September 2005

The important biosynthetic intermediate chorismate reacts thermally by two competitive pathways, one leading to 4-hydroxybenzoate via elimination of the enolpyruvyl side chain, and the other to prephenate by a facile Claisen rearrangement. Measurements with isotopically labeled chorismate derivatives indicate that both are concerted sigmatropic processes, controlled by the orientation of the enolpyruvyl group. In the elimination reaction of [4-2H]chorismate, roughly 60% of the label was found in pyruvate after 3 h at 60 degrees C. Moreover, a 1.846 +/- 0.057 2H isotope effect for the transferred hydrogen atom and a 1.0374 +/- 0.0005 18O isotope effect for the ether oxygen show that the transition state for this process is highly asymmetric, with hydrogen atom transfer from C4 to C9 significantly less advanced than C-O bond cleavage. In the competing Claisen rearrangement, a very large 18O isotope effect at the bond-breaking position (1.0482 +/- 0.0005) and a smaller 13C isotope effect at the bond-making position (1.0118 +/- 0.0004) were determined. Isotope effects of similar magnitude characterized the transformations catalyzed by evolutionarily unrelated chorismate mutases from Escherichia coli and Bacillus subtilis. The enzymatic reactions, like their solution counterpart, are thus concerted [3,3]-sigmatropic processes in which C-C bond formation lags behind C-O bond cleavage. However, as substantially larger 18O and smaller 13C isotope effects were observed for a mutant enzyme in which chemistry is fully rate determining, the ionic active site may favor a somewhat more polarized transition state than that seen in solution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2519010PMC
http://dx.doi.org/10.1021/ja052929vDOI Listing

Publication Analysis

Top Keywords

isotope effects
12
claisen rearrangement
8
hydrogen atom
8
+/- 00005
8
18o isotope
8
transition state
8
c-o bond
8
bond cleavage
8
smaller 13c
8
13c isotope
8

Similar Publications

The peculiarities of the crystal formation from supersaturated aqueous solutions of CuSO on polymer substrates were studied using X-ray diffractometry. During the crystal formation, the test solutions were irradiated with one or two counter-propagating ultrasonic beams. Test solutions were prepared using natural deionized water with a deuterium content of 157 ± 1 ppm.

View Article and Find Full Text PDF

Soil Microbial Communities Changes Along Depth and Contrasting Facing Slopes at the Parque Nacional La Campana, Chile.

Microorganisms

December 2024

Departamento de Ciencias y Geografía, Universidad de Playa Ancha, Avenida Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2340000, Chile.

The Parque Nacional La Campana (PNLC) was recently recognized for its high soil surface microbial richness. Here, we explored the microbial community structure in soil profiles from contrasting facing slopes where sclerophyllous forest (SF) and xerophytic shrubland (XS) develop. Soil physicochemical conditions (dry density, pH, and organic matter C and N isotopic soil signatures) were determined at three depths (5, 10, and 15 cm depths).

View Article and Find Full Text PDF

Prostate cancer ranks as the fourth most common cancer among men, with approximately 1.47 million new cases reported annually. The emergence of prostate-specific membrane antigen (PSMA) as a critical biomarker has revolutionized the diagnosis and treatment of prostate cancer.

View Article and Find Full Text PDF

The Use of a Penta-Deuterophenyl Substituent to Improve the Metabolic Stability of a Tyrosine Kinase Inhibitor.

Molecules

December 2024

Grup de Química Farmacèutica, IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona, Spain.

In cases in which a rapid metabolism is the cause of an unfavorable pharmacokinetic profile, it is important to determine the Sites of Metabolism (SoMs) of a molecule to introduce the necessary modifications to improve the stability of the compound. The substitution of hydrogen atoms by deuterium atoms has been proposed to ameliorate such properties due to the greater stability of the C-D bonds. , bearing a 2-phenylamino substituent, is a compound previously described by our group with good biological activity as a discoidin domain receptor (DDR2) inhibitor but suffers from low metabolic stability determined in a test with rat-liver microsomes (less than 50% of the initial compound after 60 min).

View Article and Find Full Text PDF

Despite treatment, prostate cancer commonly progresses into castration-resistant prostate cancer (CRPC), which remains largely incurable, requiring the development of new interventions. Darolutamide is an orally administered second-generation androgen receptor inhibitor indicated for patients with non-metastatic CRPC or metastatic hormone-sensitive prostate cancer. Here, we evaluated the effect of androgen receptor (AR) inhibition by darolutamide in combination with DNA double-strand-break-inducing targeted radium-223 alpha therapy in vitro and in an intratibial LNCaP xenograft model mimicking prostate cancer metastasized to bone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!