Uniform catalytic site in Sn-beta-zeolite determined using X-ray absorption fine structure.

J Am Chem Soc

UOP LLC, Des Plaines, Illinois 60016, EXAFS Analysis, Bolingbrook, Illinois 60440, USA.

Published: September 2005

The Sn silicate zeolite, Sn-beta, has been shown to be an efficient, selective heterogeneous catalyst for Baeyer-Villiger oxidations. Using primarily a multishell fit to extended X-ray absorption fine structure (EXAFS) data, we show that the Sn does not randomly insert into the beta-zeolite structure but rather occupies identical, specific, crystallographic sites. These sites are the T5/T6 sites in the six-membered rings. Moreover, the Sn is substituted in pairs on opposite sides of these six-membered rings. We believe that it is the specific, uniform crystallographic location of the Sn in the beta crystal structure that leads to sites with uniform catalytic activity, and consequently to the high chemical selectivity demonstrated for this catalyst. This manifests itself in the almost enzyme-like selectivity of this catalyst in Baeyer-Villiger oxidations. This uniform site distribution of the Sn suggests that there is likely a symbiotic relationship between the structure-directing agent in the zeolite synthesis and the Sn heteroatoms during the framework formation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja052543kDOI Listing

Publication Analysis

Top Keywords

uniform catalytic
8
x-ray absorption
8
absorption fine
8
fine structure
8
catalyst baeyer-villiger
8
baeyer-villiger oxidations
8
six-membered rings
8
uniform
4
catalytic site
4
site sn-beta-zeolite
4

Similar Publications

Background: Spinal cord injury (SCI) treatment remains a formidable challenge, as current therapeutic approaches provide only marginal relief and fail to reverse the underlying tissue damage. This study aims to develop a novel composite material combining enzymatic nanoparticles and nerve growth factor (NGF) to modulate the immune microenvironment and enhance SCI repair.

Methods: CeMn nanoparticles (NP) and CeMn NP-polyethylene glycol (PEG) nanozymes were synthesized via sol-gel reaction and DSPE-mPEG modification.

View Article and Find Full Text PDF

Building insights into the structure-performance relationship of catalysts has been emphasized recently. However, it remains a challenge due to catalysts' various and complex structures, especially the easily overlooked influence of the support material. Here, we reveal the crucial influences of boron introduction on synthesizing 3D carbon nanotube monoliths with embedded multistate Co metals, i.

View Article and Find Full Text PDF

Hybrid polyionic complexes (HPICs) are colloidal structures with a charged core rich in metal ions and a neutral hydrophilic corona. Their properties, whether as reservoirs or catalysts, depend on the accessibility and environment of the metal ions. This study demonstrates that modifying the coordination sphere of these ions can tune the properties of HPICs by altering the composition of the complexing block or varying formulation conditions.

View Article and Find Full Text PDF

Droplet-Based EPR Spectroscopy for Real-Time Monitoring of Liquid-Phase Catalytic Reactions.

Small Methods

January 2025

Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland.

In situ monitoring is essential for catalytic process design, offering real-time insights into active structures and reactive intermediates. Electron paramagnetic resonance (EPR) spectroscopy excels at probing geometric and electronic properties of paramagnetic species during reactions. Yet, state-of-the-art liquid-phase EPR methods, like flat cells, require custom resonators, consume large amounts of reagents, and are unsuited for tracking initial kinetics or use with solid catalysts.

View Article and Find Full Text PDF

Analyzing the uniformity of ammonia distribution at the inlet of selective catalytic reduction reactors is crucial for enhancing denitrification efficiency. To minimize ammonia slip while ensuring effective denitrification, this study examines ammonia flow characteristics in the SCR system under various zoning schemes. In scheme I, zones A1, A2, A3, and A4 predominantly influence the left, center, center-right, and far-right regions of the reactor inlet.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!