Fatty acid steryl esters (FASE) in whole meal of 14 genotypes of tetraploid wheats (Triticum dicocconand T. durum) and 17 genotypes of hexaploid wheats (T. spelta and T. aestivum) were analyzed using different chromatographic strategies. By both GC-FID and HPLC-ELSD, tetraploid wheats are lacking two major peaks. The amounts of FASE, calculated on the basis of the GC-FID analysis, were double in hexaploid species as compared to tetraploids (40 and 20 mg/100 g db, respectively). HPLC with ESI-MS detection enabled the identification of FASE by the characteristic fragmentations and ion-adducts of each molecule. The distribution of steryl residues was not different between the wheat species: the main class of steryl derivatives found was the beta-sitosteryl derivatives, followed by campesteryl derivatives with small amounts of stigmasteryl esters. The esterified fatty acids explain the difference between the hexaploid and tetraploid wheats. In particular, small amounts of campesteryl and beta-sitosteryl, while no trace of stigmasteryl palmitates, were found in T. durum or its hulled ancestor T. dicoccon. Steryl oleates were not detectable in T. aestivum or its hulled ancestor T. spelta, which is consistent with the filogenesis of tetraploid and hexaploid species. Both chromatographic techniques (GC and HPLC) showed that FASE are useful to discriminate between hexaploid and tetraploid wheats from both qualitative and quantitative points of view.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf050625mDOI Listing

Publication Analysis

Top Keywords

tetraploid wheats
16
fatty acid
8
acid steryl
8
steryl esters
8
tetraploid hexaploid
8
hexaploid wheats
8
hexaploid species
8
small amounts
8
hexaploid tetraploid
8
hulled ancestor
8

Similar Publications

This study focused on identifying amylase-trypsin inhibitors (ATIs) in seven Norwegian-cultivated wheat varieties, including common wheat and ancestral species, and identifying potentially harmful opioid peptides within the digesta of these wheats. LC-MS/MS analysis of tryptic peptides from ATI fractions revealed that the common wheat variety Børsum exhibited the highest diversity of ATIs ( = 24), while they were less represented in tetraploid emmer ( = 11). Hexaploid wheat Bastian showed low diversity and relative abundance of ATIs.

View Article and Find Full Text PDF

Ancestral genome reconstruction and the evolution of chromosomal rearrangements in Triticeae.

J Genet Genomics

January 2025

State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China; State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Chromosomal rearrangements (CRs) often cause phenotypic variations. Although several major rearrangements have been identified in Triticeae, a comprehensive study of the order, timing, and breakpoints of CRs has not been conducted. Here, we reconstruct high-quality ancestral genomes for the most recent common ancestor (MRCA) of the Triticeae, and the MRCA of the wheat lineage (Triticum and Aegilops).

View Article and Find Full Text PDF

Do different wheat ploidy levels respond differently against stripe rust infection: Interplay between reactive oxygen species (ROS) and the antioxidant defense system?

Plant Physiol Biochem

November 2024

Division of Genetics & Plant Breeding, Faculty of Agriculture (FoA), SKUAST-Kashmir, Wadura Campus, Sopore, 193201, J&K, India; Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, 6150, Australia. Electronic address:

Wheat stripe rust (Puccinia striiformis f. sp. tritici, Pst) is the most damaging wheat disease, causing substantial losses in global wheat production and productivity.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the OXS3 gene family, known for its role in enhancing stress tolerance in plants, focusing on the phylogenetics and expression patterns within different cotton species.
  • A total of 12, 12, 22, and 23 OXS3 members were identified in selected diploid and tetraploid cotton species, revealing a consistent evolutionary relationship and highlighting genetic duplications that contribute to gene family expansion.
  • The analysis shows that OXS3 genes in cotton respond significantly to various abiotic stresses, with the highest expression in ovules, providing insights for potential genetic improvements in cotton breeding.
View Article and Find Full Text PDF

Cytotypes in Some Regions of Türkiye.

Plants (Basel)

November 2024

Department of Field Crops, Faculty of Agriculture, Van Yuzuncu Yil University, 65090 Van, Türkiye.

A new hexaploid cytotype of has been identified in Türkiye. To assess the ploidy levels of native populations, 50 samples from Adıyaman, Batman, Bitlis, Diyarbakır, Hakkari, Mardin, Siirt, Şanlıurfa, Şırnak, and Van were analyzed using flow cytometry and cytogenetic techniques. DNA content was determined by comparison with standard plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!