Based on the results of preclinical models, magnesium sulfate (MgSO4) has gained attention as a putative neuroprotective agent. The negative results of a large-scale, randomized clinical trial using MgSO4 in acute stroke have tempered the initial enthusiasm for a neuroprotective benefit of the ion. Additional, large-scale clinical trials in stroke and other forms of brain injury are underway. This article reviews the central nervous system (CNS) physiology of Mg++, disordered Mg++ homeostasis in acute brain injury, preclinical and preliminary clinical foundations of current clinical trials, and the data regarding the CNS bio-availability of MgSO4 an important requisite for neuroprotective therapy. Although human studies have confirmed that moderate hypermagnesemia is well-tolerated and feasible, only modest elevation of cerebrospinal fluid (CSF) [Mg++] occurs. This modest increment of CSF [Mg++] in brain-injured humans occurs in the range of 10 to 19%. However, experimental evidence has yet to establish whether this modest elevation is sufficient for neuroprotection. Because of the limited CNS passage of the ion, further experimental work is needed to define the neuroprotective threshold of [Mg++] in the injured brain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1385/NCC:2:3:342 | DOI Listing |
CNS Neurosci Ther
January 2025
Department of Neurology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China.
Objective: This study aims to investigate how the E3 ubiquitin ligase LITAF influences mitochondrial autophagy by modulating MCL-1 ubiquitination, and its role in the development of epilepsy.
Methods: Employing single-cell RNA sequencing (scRNA-seq) to analyze brain tissue from epilepsy patients, along with high-throughput transcriptomics, we identified changes in gene expression. This was complemented by in vivo and in vitro experiments, including protein-protein interaction (PPI) network analysis, western blotting, and behavioral assessments in mouse models.
CNS Neurosci Ther
January 2025
Qingshan Lake Science and Technology Innovation Center, Hangzhou Medical College, Hangzhou, China.
Background: Ischemic stroke is a prevalent and life-threatening cerebrovascular disease that is challenging to treat and associated with a poor prognosis. Astragaloside IV (AS-IV), a primary bioactive component of Astragali radix, has demonstrated neuroprotective benefits in previous studies. This study aimed to explore the mechanisms through which AS-IV may treat cerebral ischemia-reperfusion injury (CIRI).
View Article and Find Full Text PDFAnal Cell Pathol (Amst)
December 2024
Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China.
Trauma and burns are leading causes of death and significant global health concerns. RNA-binding proteins (RBPs) play a crucial role in post-transcriptional gene regulation, influencing various biological processes of cellular RNAs. This study aims to review the emerging trends and key areas of research on RBPs in the context of trauma and burns.
View Article and Find Full Text PDFUnlabelled: Mild hypoxic-ischemic encephalopathy is common in neonates with no evidence-based therapies, and 30-40% of patients experience adverse outcomes. The nature and progression of mild injury is poorly understood. Thus, we studied the evolution of mild perinatal brain injury using longitudinal two-photon imaging of transgenic fluorescent proteins as a novel readout of neuronal viability and activity at cellular resolution.
View Article and Find Full Text PDFTraumatic brain injury (TBI) is a leading cause of mortality and disability worldwide and can lead to secondary sequelae such as increased seizure susceptibility. Emerging work suggests that the thalamus, the relay center of the brain that undergoes secondary damage after cortical TBI, is involved with heightened seizure risks after TBI. TBI also induces the recruitment of peripheral immune cells, including T cells, to the site(s) of injury, but it is unclear how these cells impact neurological sequelae post-TBI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!