All aerial parts of a higher plant originate from the shoot apical meristem (SAM), which is initiated during embryogenesis as a part of the basic body plan. In contrast to dicot species, the SAM in Zea mays is not established at an apico-central, but at a lateral position of the transition stage embryo. Genetic and molecular studies in dicots have revealed that members of the NAC gene family of plant-specific transcription factors such as NO APICAL MERISTEM (NAM) from Petunia or the CUP-SHAPED COTYLEDON (CUC) genes from Arabidopsis contribute essential functions to the establishment of the SAM and cotyledon separation. As an approach to the understanding of meristem formation in a monocot species, members of the maize NAC family highly related to the NAM/CUC genes were isolated and characterized. Our phylogenetic analysis indicates that two distinct NAM and CUC3 precursors already existed prior to the separation of mono- and dicot species. The allocation of the two maize paralogues, ZmNAM1 and ZmNAM2 together with PhNAM, AtCUC2 and AmCUP in one sub-branch and the corresponding expression patterns support their contribution to SAM establishment. In contrast, the ZmCUC3 orthologue is associated with boundary specification at the SAM periphery, where it visualizes which fraction of cells in the SAM is committed to a new leaf primordium. Other maize NAC gene family members are clearly positioned outside of this NAM/CUC3 branch and also exhibit highly cell type-specific expression patterns.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11103-005-7702-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!