Molecular wires comprising a Ru(II)- or Re(I)-complex head group, an aromatic tail group, and an alkane linker reversibly inhibit the activity of the copper amine oxidase from Arthrobacter globiformis (AGAO), with K(i) values between 6 muM and 37 nM. In the crystal structure of a Ru(II)-wire:AGAO conjugate, the wire occupies the AGAO active-site substrate access channel, the trihydroxyphenylalanine quinone cofactor is ordered in the "off-Cu" position with its reactive carbonyl oriented toward the inhibitor, and the "gate" residue, Tyr-296, is in the "open" position. Head groups, tail-group substituents, and linker lengths all influence wire-binding interactions with the enzyme.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1224652PMC
http://dx.doi.org/10.1073/pnas.0506336102DOI Listing

Publication Analysis

Top Keywords

copper amine
8
amine oxidase
8
molecular wires
8
reversible inhibition
4
inhibition copper
4
oxidase activity
4
activity channel-blocking
4
channel-blocking rutheniumii
4
rutheniumii rheniumi
4
rheniumi molecular
4

Similar Publications

In this study, phosphoramide compounds were successfully synthesized a series of reaction transformations from P(O)H compounds. The process began with the formation of P-Se-Ar bonds, facilitated by the synergistic effect of phenylboronic acid, selenium, and appropriate ligands in the presence of copper. Following this, nucleophilic substitution reactions with amine compounds were conducted to create P-N bonds.

View Article and Find Full Text PDF

Selective detection of mitochondrial Cu in living cells by a near-infrared iridium(III) complex.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China. Electronic address:

The widespread use of copper (Cu) has raised concerns about environmental pollution and adverse effects on human health, highlighting the need to develop copper detection methods. Developing near-infrared (NIR) luminescent probes for imaging subcellular Cu is still a challenge. In this work, we have developed a luminescence probe based on a NIR iridium(III) complex, which rapidly detects Cu by combining salicylaldehyde and amine groups through a simple Schiff base reaction on the N^N ligand.

View Article and Find Full Text PDF

Large Dipole Moment Enhanced CO Adsorption on Copper Surface: Achieving 68.9% Catalytic Ethylene Faradaic Efficiency at 1.0 A cm.

Adv Mater

December 2024

The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.

The electrochemical conversion of carbon dioxide (CO) into hydrocarbon products emerges as a pivotal sustainable strategy for carbon utilization. Cu-based catalysts are currently prioritized as the most effective means for this process, yet it remains a long-term goal to achieve high product selectivity at elevated current densities. This study delved into exploring the influence of a topological poly(2-aminoazulene) with a substantial dipole moment on modulating the Cu surface dipole field to augment the catalytic activity involved in CO reduction.

View Article and Find Full Text PDF

Copper(II)-Catalyzed Enantioselective Addition of Aryl Amines to Isatin-Derived -Boc-Ketimines for the Synthesis of Acyclic ,'-Ketals.

J Org Chem

December 2024

State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China.

Here, we demonstrated a copper(II)-catalyzed enantioselective addition of aryl amines to isatin-derived -Boc-ketimines using chiral O-N-N tridentate ligands derived from BINOL and proline. Generally, the chiral acyclic ,'-ketals were obtained in high yields (up to 98%) and excellent ee values (up to 98%). Various aryl amines could be tolerated and a gram-scale reaction was also possible.

View Article and Find Full Text PDF

Assessing metal-induced glycation in French fries.

Metallomics

December 2024

Department of Environmental and Physical Sciences, Faculty of Science.

Non-enzymatic glycation is the chemical reaction between the amine group of an amino acid and the carbonyl group of a reducing sugar. The final products of this reaction, advanced glycation end-products (AGEs), are known to play a key role in aging and many chronic diseases. The kinetics of the AGE formation reaction depends on several factors, including pH, temperature, and the presence of prooxidant metals, such as iron and copper.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!