Structural basis of cellulosome efficiency explored by small angle X-ray scattering.

J Biol Chem

Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 6098, CNRS and Universities Aix-Marseille I and II, 163 Avenue de Luminy, Case 932, F-13288 Marseille Cedex 9, France.

Published: November 2005

Cellulose, the main structural component of plant cell walls, is the most abundant carbohydrate polymer in nature. To break down plant cell walls, anaerobic microorganisms have evolved a large extracellular enzyme complex termed cellulosome. This megadalton catalytic machinery organizes an enzymatic assembly, tenaciously bound to a scaffolding protein via specialized intermodular "cohesin-dockerin" interactions that serve to enhance synergistic activity among the different catalytic subunits. Here, we report the solution structure properties of cellulosome-like assemblies analyzed by small angle x-ray scattering and molecular dynamics. The atomic models, generated by our strategy for the free chimeric scaffoldin and for binary and ternary complexes, reveal the existence of various conformations due to intrinsic structural flexibility with no, or only coincidental, inter-cohesin interactions. These results provide primary evidence concerning the mechanisms by which these protein assemblies attain their remarkable synergy. The data suggest that the motional freedom of the scaffoldin allows precise positioning of the complexed enzymes according to the topography of the substrate, whereas short-scale motions permitted by residual flexibility of the enzyme linkers allow "fine-tuning" of individual catalytic domains.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M503168200DOI Listing

Publication Analysis

Top Keywords

small angle
8
angle x-ray
8
x-ray scattering
8
plant cell
8
cell walls
8
structural basis
4
basis cellulosome
4
cellulosome efficiency
4
efficiency explored
4
explored small
4

Similar Publications

Highly deformable flapping membrane wings suppress the leading edge vortex in hover to perform better.

Proc Natl Acad Sci U S A

February 2025

École polytechnique fédérale de Lausanne, School of Engineering, Institute of Mechanical Engineering, Unsteady Flow Diagnostics Laboratory, Lausanne 1015, Switzerland.

Airborne insects generate a leading edge vortex when they flap their wings. This coherent vortex is a low-pressure region that enhances the lift of flapping wings compared to fixed wings. Insect wings are thin membranes strengthened by a system of veins that does not allow large wing deformations.

View Article and Find Full Text PDF

Glycolipids are known to stabilize biomembrane multilayers through preferential sugar-sugar interactions that act as weak transient membrane cross-links. Here, we use small-angle and quasi-elastic neutron scattering on oligolamellar phospholipid vesicles containing defined glycolipid fractions in order to elucidate the influence of glycolipids on membrane mechanics and dynamics. Small-angle neutron scattering (SANS) reveals that the oligolamellar vesicles (OLVs) obtained by extrusion are polydisperse with regard to the number of lamellae, , which renders the interpretation of the quasi-elastic neutron spin echo (NSE) data nontrivial.

View Article and Find Full Text PDF

The precise engineering of microporosity is challenging due to the interference at sub-nm scale from unexpected structural flexibility and molecular packing. Herein, the concept of topological supramolecular complexation is proposed for the feasible fabrication of hierarchical microporosity with broad tunability in amorphous form. The 2.

View Article and Find Full Text PDF

Aim: Fixed retention is the method of choice for permanent stabilization of the treatment outcome. In recent years, CAD/CAM techniques have been developed to produce retainers with high precision and tension-free fit. The aim of this retrospective study was to evaluate the suitability of a semi-industrial retainer manufacturing process (office-based construction, external laboratory manufacturing) in terms of positioning accuracy and post-treatment changes.

View Article and Find Full Text PDF

Twisted bilayer graphene (TBG) has drawn considerable attention due to its angle-dependent electrical, optical, and mechanical properties, yet preparing and identifying samples at specific angles on a large scale remains challenging and labor-intensive. Here, a data-driven strategy that leverages Raman spectroscopy is proposed in combination with deep learning to rapidly and non-destructively decode and predict the twist angle of TBG across the full angular range. By processing high-dimensional Raman data, the deep learning model extracts hidden information to achieve precise twist angle identification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!