The mechanism of channel opening for voltage-gated calcium channels is poorly understood. The importance of a conserved isoleucine residue in the pore-lining segment IIS6 has recently been highlighted by functional analyses of a mutation (I745T) in the Ca(V)1.4 channel causing severe visual impairment (Hemara-Wahanui, A., Berjukow, S., Hope, C. I., Dearden, P. K., Wu, S. B., Wilson-Wheeler, J., Sharp, D. M., Lundon-Treweek, P., Clover, G. M., Hoda, J. C., Striessnig, J., Marksteiner, R., Hering, S., and Maw, M. A. (2005) Proc. Natl. Acad. Sci. U. S. A. 102, 7553-7558). In the present study we analyzed the influence of amino acids in segment IIS6 on gating of the Ca(V)1.2 channel. Substitution of Ile-781, the Ca(V)1.2 residue corresponding to Ile-745 in Ca(V)1.4, by residues of different hydrophobicity, size and polarity shifted channel activation in the hyperpolarizing direction (I781P > I781T > I781N > I781A > I781L). As I781P caused the most dramatic shift (-37 mV), substitution with this amino acid was used to probe the role of other residues in IIS6 in the process of channel activation. Mutations revealed a high correlation between the midpoint voltages of activation and inactivation. A unique kinetic phenotype was observed for residues 779-782 (LAIA) located in the lower third of segment IIS6; a shift in the voltage dependence of activation was accompanied by a deceleration of activation at hyperpolarized potentials, a deceleration of deactivation at all potentials (I781P and I781T), and decreased inactivation. These findings indicate that Ile-781 substitutions both destabilize the closed conformation and stabilize the open conformation of Ca(V)1.2. Moreover there may be a flexible center of helix bending at positions 779-782 of Ca(V)1.2. These four residues are completely conserved in high voltage-activated calcium channels suggesting that these channels may share a common mechanism of gating.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3189691 | PMC |
http://dx.doi.org/10.1074/jbc.M507013200 | DOI Listing |
Objectives: To investigate the differential insecticide-susceptibility of two molecular forms of Anopheles subpictus complex (A and B) against DDT and pyrethroids, the occurrence of knockdown resistance (kdr) mutations in these forms, and the association of kdr mutations with insecticide resistance.
Methods: Insecticide susceptibility tests of An. subpictus s.
Med Vet Entomol
June 2023
National Institute of Malaria Research, New Delhi, India.
There are at least three known knockdown resistance (kdr) mutations reported globally in the human head louse Pediculus humanus capitis De Geer (Phthiraptera: Anoplura) that are associated with reduced sensitivity to pyrethroids. However, the prevalence of kdr mutation in head lice is not known in the Indian subcontinent. To identify kdr mutations in the Indian head lice population, the genomic region of the voltage-gated sodium channel gene encompassing IIS1-2 linker to IIS6 segments was PCR-amplified and sequenced from P.
View Article and Find Full Text PDFInfect Genet Evol
April 2022
Department of Biology, Baylor University, Waco, TX, USA. Electronic address:
Anopheles stephensi is a malaria vector that has been recently introduced into East Africa, where it threatens to increase malaria disease burden. The use of insecticides, especially pyrethroids, is still one of the primary malaria vector control strategies worldwide. The knockdown resistance (kdr) mutation in the IIS6 transmembrane segment of the voltage-gated sodium channel (vgsc) is one of the main molecular mechanisms of pyrethroid resistance in Anopheles.
View Article and Find Full Text PDFBrain
August 2021
Institute of Physiology, Medical University Innsbruck, Innsbruck 6020, Austria.
T-type calcium channels (Cav3.1 to Cav3.3) regulate low-threshold calcium spikes, burst firing and rhythmic oscillations of neurons and are involved in sensory processing, sleep, and hormone and neurotransmitter release.
View Article and Find Full Text PDFPest Manag Sci
December 2020
Hainan University, Ministry of Education, Haikou, China.
Background: Pyrethroids are classified as type I and type II for distinct symptomology. Voltage-gated sodium channel is a primary target of pyrethroids. Mutations of the insect sodium channel have been identified to result in resistance to pyrethroids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!