Reconstruction of the genitourinary tract, using engineered urological tissues, requires a mechanically stable biodegradable and biocompatible scaffold and cultured cells. Such engineered autologous tissue would have many clinical implications. In this study a highly porous biodegradable polyesterurethane-foam, DegraPol was evaluated with tissue engineered human primary bladder smooth muscle cells. The cell-polymer constructs were characterized by histology, scanning electron microscopy, immunohistochemistry and proliferation assays. Smooth muscle cells grown on DegraPol showed the same morphology as when grown on control polystyrene surface. Positive immunostaining with alpha smooth muscle actin indicated the preservation of the specific cell phenotype. Micrographs from scanning electron microscopy showed that the cells grew on the foam surface as well as inside the pores. In addition they grew as cell aggregates within the foam. The smooth muscle cells proliferated on the Degrapol; however, proliferation rate decreased due to apoptosis with time in culture. This study showed that Degrapol has the potential to be used as a scaffold.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2005.08.026 | DOI Listing |
ACS Biomater Sci Eng
January 2025
Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3E3, Canada.
Restenosis remains a long-standing limitation to effectively maintain functional blood flow after percutaneous transluminal angioplasty (PTA). While the use of drug-coated balloons (DCBs) containing antiproliferative drugs has improved patient outcomes, limited tissue transfer and poor therapeutic targeting capabilities contribute to off-target cytotoxicity, precluding adequate endothelial repair. In this work, a DCB system was designed and tested to achieve defined arterial delivery of an antirestenosis therapeutic candidate, cadherin-2 (N-cadherin) mimetic peptides (NCad), shown to selectively inhibit smooth muscle cell migration and limit intimal thickening in early animal PTA models.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital Affiliated to Tianjin Medical University, No.154 Heping Road to Anshan, Tianjin City, 300052, People's Republic of China.
Dysregulated circular RNAs (circRNAs) has been revealed to be involved in pulmonary fibrosis progression. Herein, this study focused on exploring the function and mechanism of circRNA Zinc Finger MYM-Type Containing 2 (circZMYM2) on idiopathic pulmonary fibrosis (IPF) using transforming growth factor (TGF)-β1-stimulated fibroblasts. Human fibroblast cell lines IMR-90 and HFL1 were stimulated with TGF-β1 to mimic fibrosis condition in vitro.
View Article and Find Full Text PDFCurr Mol Pharmacol
January 2025
Department of Cardiology, Affiliated People's Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu, China.
Aims: Cardiac fibrosis causes most pathological alterations of cardiomyopathy in diabetes and heart failure patients. The activation and transformation of cardiac fibroblasts (CFs) are the main pathological mechanisms of cardiac fibrosis. It has been established that Sirtuin1 (Sirt1) plays a protective role in the pathogenesis of cardiovascular disorders.
View Article and Find Full Text PDFBasic Clin Pharmacol Toxicol
February 2025
Department of Biomedicine, Aarhus University, Aarhus, Denmark.
The media-lumen diameter ratio of small arteries is increased in hypertension, diabetes and obesity. It is likely that both shear stress on the endothelial cells, transmural pressure and smooth muscle cell tone are important for the altered vascular structure. However, the precise interaction and importance of these factors are incompletely understood.
View Article and Find Full Text PDFRespir Res
January 2025
Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
Background: Obstructive sleep apnea (OSA) is frequently associated with increased incidence and mortality of pulmonary hypertension (PH). The immune response contributes to pulmonary artery remodeling and OSA-related diseases. The immunologic factors linked to OSA-induced PH are not well understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!