Semi-extended solution structure of human myeloma immunoglobulin D determined by constrained X-ray scattering.

J Mol Biol

Department of Biochemistry and Molecular Biology, Royal Free and University College Medical School, University College London, Gower Street, London WC1E 6BT, UK.

Published: October 2005

Human immunoglobulin D (IgD) occurs most abundantly as a membrane-bound antibody on the surface of mature B cells (mIgD). IgD possesses the longest hinge sequence of all the human antibody isotypes, with 64 residues connecting the Fab and Fc fragments. A novel rapid purification scheme of secreted IgD from the serum of an IgD myeloma patient using thiophilic (T-gel) and lectin affinity chromatography gave a stable, homogeneous IgD preparation. Synchrotron X-ray scattering and analytical ultracentrifugation of IgD identified the solution arrangement of its Fab and Fc fragments, and thereby its hinge structure. The Guinier X-ray radius of gyration R(G) of 6.9(+/-0.1)nm showed that IgD is more extended in solution than the immunoglobulin subclass IgA1 (R(G) of 6.1-6.2nm). Its distance distribution function P(r) showed a single peak at 4.7nm and a maximum dimension of 23nm. Velocity experiments gave a sedimentation coefficient of 6.3S, which is similar to that for IgA1 at 6.2S. The complete IgD structure was modelled using molecular dynamics to generate IgD hinge structures, to which homology models for the Fab and Fc fragments were connected. Good scattering curve fits were obtained with 18 semi-extended best fit IgD models that were filtered from 8500 trial models. These best-fit models showed that the IgD hinge does not correspond to an extended polypeptide structure. The averaged solution structure arrangement of the Fab and Fc fragments in IgD is principally T-shaped and flexible, with contribution from Y-shaped and inverted Y-shaped structures. Although the linear sequence of the IgD hinge is much longer, comparison with previous scattering modelling of IgA1 and IgA2(m)1 suggests that the hinge of IgA1 and IgD are more similar than might have been expected, Both possess flexible T-shaped solution structures, probably reflecting the presence of restraining O-linked sugars.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2005.07.072DOI Listing

Publication Analysis

Top Keywords

fab fragments
16
igd
14
igd hinge
12
solution structure
8
x-ray scattering
8
arrangement fab
8
hinge
6
structure
5
semi-extended solution
4
structure human
4

Similar Publications

Solution-based affinity assays are used for the selection and characterization of proteins that could be developed into therapeutic molecules. However, these assays have limitations for cell-surface proteins as in most cases their purification requires detergent solubilization and are unlikely to assume conformations in solution that resemble their native states in cell membranes. This report describes a novel electrochemiluminescence-based method, called MSD-CAT, for the affinity analysis of antibodies binding to cell-surface receptors.

View Article and Find Full Text PDF

We have developed a portfolio of antibody-based modules that can be prefabricated as standalone units and snapped together in plug-and-play fashion to create uniquely powerful multifunctional assemblies. The basic building blocks are derived from multiple pairs of native and modified Fab scaffolds and protein G (PG) variants engineered by phage display to introduce high pair-wise specificity. The variety of possible Fab-PG pairings provides a highly orthogonal system that can be exploited to perform challenging cell biology operations in a straightforward manner.

View Article and Find Full Text PDF

A human epidermal growth factor receptor 2 (HER2)-specific nanobody called 2Rs15d, containing a His3LysHis6 segment at the C-terminus, was recombinantly produced. Subsequent site-selective acylation on the C-terminally activated lysine residue allowed installation of the cytotoxin monomethyl auristatin E-functionalized cathepsin B-sensitive payload to provide a highly homogenous nanobody-drug conjugate (NBC), which demonstrated high potency and selectivity for HER2-positive breast cancer models.

View Article and Find Full Text PDF

Crystal Structures of Antigen-Binding Fragment of Anti-Osteocalcin Antibody KTM219.

Int J Mol Sci

January 2025

Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Nagano, Japan.

Osteocalcin is a useful biomarker for bone formation and bone-related diseases. KTM219 is an anti-osteocalcin C-terminal peptide antibody. The single-chain variable region (scFv) and antigen-binding fragment (Fab) of KTM219 are applicable to the Quenchbody (Q-body) immunoassay.

View Article and Find Full Text PDF

In chronic lymphocytic leukemia (CLL), natural killer (NK) cells show a dysfunctional phenotype that correlates with disease progression. Our aim was to restore NK cell functionality in CLL through a specifically targeted IL15-stimulating activity; IL15 targeting could, in fact, potentiate the activity of NK cells and reduce off-target effects. We designed and developed a cis-acting immunocytokine composed of an anti-CD56 single-chain Fragment variable (scFv) and IL15, labeled scFvB1IL15.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!