The high incidence of activating RAS mutations, coupled with accumulating evidence linking RAS to multiple myeloma (MM) pathogenesis, indicate that novel therapies utilising inhibitors of RAS prenylation and signalling may be successful in the management of this disease. While preclinical studies investigating prenylation inhibitors, such as lovastatin, farnesyltransferase inhibitors (FTI) and geranylgeranyltransferase inhibitors (GGTI), have been promising, recent phase I/II clinical trials with FTI R115777 were disappointing, suggesting resistance to FTI monotherapy. To address this issue, the effects of FTI, GGTI and lovastatin alone and in combination were analysed in MM cell lines and primary cells. FTI treatment blocked H-RAS processing, but was ineffective at inhibiting K- and N-RAS prenylation because of alternative geranylgeranylation of these isoforms. However, combinations of FTI and GGTI or lovastatin were found to synergistically inhibit MM cell proliferation, migration, K- and N-RAS processing, RAS-to-mitogen-activated protein kinase signalling and to induce apoptosis. In contrast to FTI, lovastatin and some GGTI were found to cause intracellular accumulation of Rho proteins. Our results suggest that clinical efficacy of prenylation inhibitors in MM are limited by alternative prenylation of several small G-proteins, such as RhoB, K- and N-RAS. Furthermore, strategies combining FTI with GGTI or statins may provide greater efficacy in MM treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2141.2005.05696.xDOI Listing

Publication Analysis

Top Keywords

prenylation inhibitors
12
fti ggti
12
kinase signalling
8
multiple myeloma
8
fti
8
ggti lovastatin
8
inhibitors
6
prenylation
5
ggti
5
combining prenylation
4

Similar Publications

Hepatocellular carcinoma (HCC) is one of the most frequent solid tumors worldwide. According to the Global Cancer Statistics 2020, liver cancer remains the third cause of cancer death globally. Despite significant advances in systemic therapy, HCC still has one of the worst prognoses due to its frequent recurrence and metastasis.

View Article and Find Full Text PDF

Broussoflavonol F exhibited anti-proliferative and anti-angiogenesis effects in colon cancer via modulation of the HER2-RAS-MEK-ERK pathway.

Phytomedicine

December 2024

Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China. Electronic address:

Background: A prenylated flavonoid, broussoflavonol F (BFF), was isolated from Macaranga genus with cytotoxicities against various cancer cells, though its underlying mechanisms have not been fully elucidated.

Hypothesis: This study aimed to investigate the anti-tumor and anti-angiogenesis activities of BFF and its underlying mechanisms in colon cancer.

Method: In the in vitro study, the cytotoxic effects of BFF in human colon cancer HCT-116 and LoVo cells were examined using MTT assay, BrdU assay and colony formation assay.

View Article and Find Full Text PDF

In order to make more rational use of , a systematic separation from the roots of was performed in the current study. The investigation of chemical constituents resulted in the isolation of a rare prenylated isoflavone-quinone, fleminquinone A (), together with four known analogues (). Their structures were established by extensive physical and spectroscopic data analysis.

View Article and Find Full Text PDF

Thirty-six compounds were isolated from extract of the stem bark of Illicium burmanicum, including twelve previously undescribed prenylated C6-C3 compounds and a norsesquiterpene lactone: illicidione D (1), illicidione E (2), illicidione F (3), illicidione G (4), (2R,4S,11R)-12-O-ethylillifunone C (5), (2R,4S,11R)-illifunone C-12-O-β-d-glucopyranoside (6), (2R,4S,11R)-2-hydroxyillifunone C (7), 4-epi-2,3-dehydroillifunone C (8), illiburmanone A (9), illiburmanone B (10), illiburmanlactone A (11), (2S,4S,5S,11R)-2,3-dihydroillicione E (12), and illiburmanolside A (13). Their structures were determined based on extensive spectroscopic data analyses, including MS, NMR, and ECD spectra. The anti-inflammatory activity of the isolated compounds (1-36) was evaluated, and compounds 7, 12, 14, and 18 exhibited inhibitory effects in RAW 264.

View Article and Find Full Text PDF

Morusin, a novel inhibitor of ACLY, induces mitochondrial apoptosis in hepatocellular carcinoma cells through ROS-mediated mitophagy.

Biomed Pharmacother

November 2024

The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China. Electronic address:

Objective: Morusin (Mor), a prenylated flavonoid isolated from the root bark of Morus alba L., exhibits potent anti-tumour effects; however, the molecular target of Mor is still not entirely clear. This study aimed to elucidate the mechanism of Mor against hepatocellular carcinoma (HCC) and identify potential molecular targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!