The cardiac-specific Nkx2.5 homeodomain has been expressed as a 79-residue protein with the oxidizable Cys(56) replaced with Ser. The Nkx2.5 or Nkx2.5(C56S) homeodomain is 73% identical in sequence to and has the same NMR structure as the vnd (ventral nervous system defective)/NK-2 homeodomain of Drosophila when bound to the same specific DNA. The thermal unfolding of Nkx2.5(C56S) at pH 6.0 or 7.4 is a reversible, two-state process with unit cooperativity, as measured by differential scanning calorimetry (DSC) and far-UV circular dichroism. Adding 100 mM NaCl to Nkx2.5(C56S) at pH 7.4 increases T(m) from 44 to 54 +/- 0.2 degrees C and DeltaH from 34 to 45 +/- 2 kcal/mol (giving a DeltaC(p) of approximately 1.2 kcal K(-)(1) mol(-)(1) for homeodomain unfolding). DSC profiles of Nkx2.5 indicate fluctuating nativelike structures at <37 degrees C. Titrations of specific 18 bp DNA with Nkx2.5(C56S) in buffer at pH 7.4 with 100 mM NaCl yield binding constants of 2-6 x 10(8) M(-)(1) from 10 to 37 degrees C and a stoichiometry of 1:1 for homeodomain binding DNA, using isothermal titration calorimetry. The DNA binding reaction of Nkx2.5 is enthalpically controlled, and the temperature dependence of DeltaH gives a DeltaC(p) of -0.18 +/- 0.01 kcal K(-)(1) mol(-)(1). This corresponds to 648 +/- 36 A(2) of buried apolar surface upon Nkx2.5(C56S) binding duplex B-DNA. Thermodynamic parameters differ for Nkx2.5 and vnd/NK-2 homeodomains binding specific DNA. Unbound NK-2 is more flexible than Nkx2.5.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi050835s | DOI Listing |
FASEB J
December 2024
Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.
Neddylation is a highly conserved post-translational modification that plays critical roles in various cellular processes through the modulation of cullins and non-cullin substrates. While neddylation is known to be essential for embryonic development, tumor growth, and organogenesis of different tissues, its role in cardiogenesis remains unexplored. Here, we investigated the role of neddylation in early cardiac development by deleting the gene encoding a regulatory subunit of the NEDD8-specific E1 activating enzyme, Nae1, globally and in a heart-specific fashion via Nkx2-5.
View Article and Find Full Text PDFJ Clin Invest
December 2024
Department of Genetics, Harvard Medical School, Boston, United States of America.
Heterozygous truncating variants in the sarcomere protein titin (TTN) are the most common genetic cause of heart failure. To understand mechanisms that regulate abundant cardiomyocyte TTN expression we characterized highly conserved intron 1 sequences that exhibited dynamic changes in chromatin accessibility during differentiation of human cardiomyocytes from induced pluripotent stem cells (hiPSC-CMs). Homozygous deletion of these sequences in mice caused embryonic lethality while heterozygous mice demonstrated allele-specific reduction in Ttn expression.
View Article and Find Full Text PDFFunction (Oxf)
December 2024
Department of Physiology and Aging, University of Florida, Gainesville FL, United States.
It has been well established that cardiovascular diseases exhibit significant differences between sexes in both preclinical models and humans. In addition, there is growing recognition that disrupted circadian rhythms can contribute to the onset and progression of cardiovascular diseases. However, little is known about sex differences between the cardiac circadian clock and circadian transcriptomes in mice.
View Article and Find Full Text PDFEnviron Health Perspect
November 2022
Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institute for Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA.
Background: Exposure to cadmium (Cd) is associated with cardiovascular diseases. Maternal Cd exposure is a significant risk factor for congenital heart disease. However, mechanisms of Cd on developmental cardiotoxicity are not well defined.
View Article and Find Full Text PDFGenes Dev
April 2022
Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
The nucleosome remodeling and deacetylase (NuRD) complex is one of the central chromatin remodeling complexes that mediates gene repression. NuRD is essential for numerous developmental events, including heart development. Clinical and genetic studies have provided direct evidence for the role of chromodomain helicase DNA-binding protein 4 (CHD4), the catalytic component of NuRD, in congenital heart disease (CHD), including atrial and ventricular septal defects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!