We have designed polypeptides combining selected lipophilic (LP) and hydrophilic (HP) sequences that assemble into amphiphilic (AP) alpha-helical bundles to reproduce key structure characteristics and functional elements of natural membrane proteins. The principal AP maquette (AP1) developed here joins 14 residues of a heme binding sequence from a structured diheme-four-alpha-helical bundle (HP1), with 24 residues of a membrane-spanning LP domain from the natural four-alpha-helical M2 channel of the influenza virus, through a flexible linking sequence (GGNG) to make a 42 amino acid peptide. The individual AP1 helices (without connecting loops) assemble in detergent into four-alpha-helical bundles as observed by analytical ultracentrifugation. The helices are oriented parallel as indicated by interactions typical of adjacent hemes. AP1 orients vectorially at nonpolar-polar interfaces and readily incorporates into phospholipid vesicles with >97% efficiency, although most probably without vectorial bias. Mono- and diheme-AP1 in membranes enhance functional elements well established in related HP analogues. These include strong redox charge coupling of heme with interior glutamates and internal electric field effects eliciting a remarkable 160 mV splitting of the redox potentials of adjacent hemes that leads to differential heme binding affinities. The AP maquette variants, AP2 and AP3, removed heme-ligating histidines from the HP domain and included heme-ligating histidines in LP domains by selecting the b(H) heme binding sequence from the membrane-spanning d-helix of respiratory cytochrome bc(1). These represent the first examples of AP maquettes with heme and bacteriochlorophyll binding sites located within the LP domains.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2574520 | PMC |
http://dx.doi.org/10.1021/bi050695m | DOI Listing |
Int J Biol Macromol
January 2025
Department of Life Sciences and Systems Biology, University of Torino, Italy.
A new gene coding for an iron-containing enzyme was identified in the genome of Acinetobacter radioresistens. Bioinformatics analysis allowed the assignment of the protein to DyP peroxidases, due to the presence of conserved residues involved in heme binding and catalysis. Moreover, Ar-DyP is located in an operon coding also for other enzymes involved in iron uptake and regulation.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
School of Integrated Chinese Medicine and Western Medicine, Anhui University of Chinese Medicine Hefei 230012, China Anhui Province Key Laboratory of Chinese Medicinal Formula Hefei 230012, China.
This study aims to investigate the effect of Linggui Zhugan Decoction(LGZGD) on autophagy in the mouse model of chronic heart failure(CHF) induced by myocardial infarction(MI), as well as the regulatory effect of LGZGD on the hypoxia-inducible factor-1α(HIF-1α)/heme oxygenase-1(HO-1) signaling pathway, based on bioinformatics and animal experiments. The active ingredients and corresponding targets of LGZGD were retrieved from the Traditional Chinese Medicine Systems Pharmacology and Analysis Database, and GEO, GeneCards, and DisGeNET were searched for the disease targets. Cytoscape was used to establish a "drug-component-target" network.
View Article and Find Full Text PDF( ) is the world's most deadly infectious pathogen and new drugs are urgently required to combat the emergence of multi-(MDR) and extensively-(XDR) drug resistant strains. The bacterium specifically upregulates sterol uptake pathways in infected macrophages and the metabolism of host-derived cholesterol is essential for long-term survival Here, we report the development of antitubercular small molecules that inhibit the cholesterol oxidases CYP125 and CYP142, which catalyze the initial step of cholesterol metabolism. An efficient biophysical fragment screen was used to characterize the structure-activity relationships of CYP125 and CYP142, and identify a non-azole small molecule that can bind to the heme cofactor of both enzymes.
View Article and Find Full Text PDFJ Mol Graph Model
January 2025
Molecular Modeling and Protein Engineering Lab, Biology Division, Department of Humanities and Sciences, Indian Institute of Petroleum and Energy, Visakhapatnam, Andhra Pradesh, 530003, India. Electronic address:
Human 5-lipoxygenase (LOX) is a non-heme, Fe-containing LOX which catalyses the conversion of arachidonic acid (AA) to leukotriene A (LTA). LTA is subsequently converted to cysteinyl-LTs and LTB that cause bronchoconstriction and act as chemotactic and chemokinetic agent on human leukocytes, respectively. Leukotrienes play significant roles in inflammation in asthma, cardiovascular diseases, allergic rhinitis, atopic dermatitis, inflammatory bowel disease, rheumatoid arthritis, psoriasis and many more.
View Article and Find Full Text PDFMol Med
January 2025
Department of Spine Surgery, The Fifth Affiliated Hospital of Guangxi Medical University, 89 Qixing Road, Nanning, Guangxi, 530022, China.
Background: This study aimed to investigate the impact of AM1241 on lipopolysaccharide (LPS)-induced chondrocyte inflammation in mice and its potential mechanism for improving osteoarthritis (OA).
Methods: The OA mice model was established employing the refined Hulth method. The impact of different concentrations of AM1241 on mice chondrocyte activity was detected using CCK-8.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!