A suspension array hybridization assay is described for the detection of 31 mutations and polymorphisms in the cystic fibrosis transmembrane conductance regulator (CFTR) gene using Luminex xMAP technology. The Luminex xMAP system allows simultaneous detection of up to 100 different targets in a single multiplexed reaction. Included in the method are the procedures for design of oligonucleotide capture probes and PCR amplification primers, coupling oligonucleotide capture probes to carboxylated microspheres, hybridization of coupled microspheres to oligonucleotide targets, production of targets from DNA samples by multiplexed PCR amplification, and detection of PCR-amplified targets by direct hybridization to probe-coupled microspheres. Mutation screening with the system is rapid, requires relatively few sample manipulations, and provides adequate resolution to reliably genotype the 25 CFTR mutations and 6 CFTR polymorphisms contained in the ACMG/ACOG/NIH-recommended core mutation panel for general population CF carrier screening.

Download full-text PDF

Source
http://dx.doi.org/10.1385/1-59259-923-0:147DOI Listing

Publication Analysis

Top Keywords

mutations polymorphisms
8
polymorphisms cystic
8
cystic fibrosis
8
fibrosis transmembrane
8
transmembrane conductance
8
conductance regulator
8
suspension array
8
luminex xmap
8
oligonucleotide capture
8
capture probes
8

Similar Publications

Half the world's population is at risk of developing a malaria infection, which is caused by parasites of the genus . Currently, resistance has been identified to all clinically available antimalarials, highlighting an urgent need to develop novel compounds and better understand common mechanisms of resistance. We previously identified a novel tetrahydro-β-carboline compound, PRC1590, which potently kills the malaria parasite.

View Article and Find Full Text PDF

Sabah has the highest prevalence of β-thalassemia in Malaysia, with the Filipino β-deletion as the predominant mutation. Patients with the homozygous Filipino β-deletion exhibit phenotypic heterogeneity due to various genetic modifiers, yet the effects of these modifiers on the clinical phenotype remain poorly understood. This study investigated the effects of the coinheritance of α-thalassemia, I-γ rs7482144, rs766432, and 5'HS4 rs16912979 polymorphisms on the clinical phenotype of homozygous Filipino β-deletion patients in Sabah.

View Article and Find Full Text PDF

Background: One of the main issues facing public health with microbial infections is antibiotic resistance. Nanoparticles (NPs) are among the best alternatives to overcome this issue. Silver nanoparticle (AgNPs) preparations are widely applied to treat multidrug-resistant pathogens.

View Article and Find Full Text PDF

Non-covalent interactions of poly(ADP-ribose) (PAR) facilitate condensate formation, yet the impact of these interactions on condensate properties remains unclear. Here, we demonstrate that PAR-mediated interactions through PARP13, specifically the PARP13.2 isoform, are essential for modulating the dynamics of stress granules-a class of cytoplasmic condensates that form upon stress, including types frequently observed in cancers.

View Article and Find Full Text PDF

An Efficient and Cost-Effective Novel Strategy for Identifying CRISPR-Cas-Mediated Mutants in Plant Offspring.

CRISPR J

January 2025

Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, China.

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 system has revolutionized targeted mutagenesis, but screening for mutations in large sample pools can be time-consuming and costly. We present an efficient and cost-effective polymerase chain reaction (PCR)-based strategy for identifying edited mutants in the T generation. Unlike previous methods, our approach addresses the challenges of large progeny populations by using T generation sequencing results for genotype prediction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!