Structural basis for anticodon recognition by methionyl-tRNA synthetase.

Nat Struct Mol Biol

Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501, Japan.

Published: October 2005

AI Article Synopsis

Article Abstract

In the 2.7-A resolution crystal structure of methionyl-tRNA synthetase (MetRS) in complex with tRNA(Met) and a methionyl-adenylate analog, the tRNA anticodon loop is distorted to form a triple-base stack comprising C34, A35 and A38. A tryptophan residue stacks on C34 to extend the triple-base stack. In addition, C34 forms Watson-Crick-type hydrogen bonds with Arg357. This structure resolves the longstanding question of how MetRS specifically recognizes tRNA(Met).

Download full-text PDF

Source
http://dx.doi.org/10.1038/nsmb988DOI Listing

Publication Analysis

Top Keywords

methionyl-trna synthetase
8
triple-base stack
8
structural basis
4
basis anticodon
4
anticodon recognition
4
recognition methionyl-trna
4
synthetase 27-a
4
27-a resolution
4
resolution crystal
4
crystal structure
4

Similar Publications

A novel methionyl-tRNA synthetase inhibitor targeting gram-positive bacterial pathogens.

Antimicrob Agents Chemother

December 2024

Center for Emerging and Re-emerging Infectious Diseases, Department of Medicine, Division of Allergy and Infectious Disease, University of Washington, Seattle, Washington, USA.

New antibiotics are needed to treat gram-positive bacterial pathogens. is a novel inhibitor of methionyl-tRNA synthetase with selective activity against gram-positive bacteria. The minimum inhibitory concentrations (MICs) against and species range from 0.

View Article and Find Full Text PDF
Article Synopsis
  • - Brucellosis, caused by the Brucella bacterium, leads to serious economic losses in livestock due to reproductive issues and reduced milk production, coupled with antibiotic resistance complicating treatment efforts.
  • - This study focuses on isolating a compound called piperolactam A from Piper betle leaves, aiming to evaluate its potential as an antibacterial agent against Brucella sp. and its mechanism of action against specific enzymes in bacteria.
  • - Through molecular docking methods, the research shows that piperolactam A exhibits strong binding affinity to leucyl-tRNA synthetase (LeuRS), suggesting it could effectively inhibit bacterial growth by disrupting protein synthesis.
View Article and Find Full Text PDF

Light-Activatable, Cell-Type Specific Labeling of the Nascent Proteome.

ACS Chem Neurosci

October 2024

Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.

Elucidating the mechanisms by which protein synthesis contributes to complex biological processes has remained a challenging endeavor. This is particularly true in the field of neuroscience, where multiple, tightly regulated periods of new protein synthesis in different cell-types are thought to facilitate intricate neurological functions, such as memory formation. Current methods for labeling the proteome have lacked the spatial and temporal resolution to accurately discriminate these overlapping and often competing windows of mRNA translation.

View Article and Find Full Text PDF

Parkinson's disease is a progressive neurodegenerative disorder marked by the death of dopaminergic neurons in the substantia nigra region of the brain. Aggregation of alpha-synuclein (α-synuclein) is a contributing factor to Parkinson's disease pathogenesis. The objective of this study is to investigate the neuroprotective effects of gut microbes on α-synuclein aggregation using both in silico and in vivo approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!