Previous studies have suggested that juxtaposition of a downstream enhancer to the fetal gamma-globin gene results in reactivation of the gamma-gene in adult erythrocytes of individuals with hereditary persistence of fetal hemoglobin (HPFH). To test the hypothesis in a much stricter basis, we produced beta locus YAC transgenic mice carrying an exact beta locus replicate of a deletional HPFH mutation, HPFH 2. Although the gamma-globin gene was expressed in the HPFH 2/beta locus YAC (HPFH2/YAC) transgenic mice in the early stage of development, it was completely silenced in the adult mice. The failure of gamma-gene reactivation by the juxtaposed HPFH2 enhancer contradicts the results of previous studies. We speculate that the discrepant results reflect differences in the distance between the locus of region (LCR) and the gamma-globin gene characteristic of the plasmid, cosmid or YAC constructs used for production of transgenic mice. The difference in the phenotype of the HPFH2/YAC transgenic mice and the humans with HPFH2 mutation suggests that in addition to juxtaposition of HPFH enhancers, the upstream region that is absent in the beta-YAC construct might be involved in gamma-gene reactivation in HPFH individuals. The DNase I hypersensitive sites of the LCR were well formed and the chromatin histones were acetylated. A moderate level of pol II binding was detected in the LCR, despite the fact that no transcription occurred in the globin-genes of the adult HPFH2/YAC transgenic mice. The results suggest that formation of the LCR chromatin structure in erythroid cells is independent of globin-gene transcription in the locus.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddi337DOI Listing

Publication Analysis

Top Keywords

transgenic mice
20
gamma-globin gene
16
hpfh2/yac transgenic
12
hpfh2 enhancer
8
previous studies
8
beta locus
8
locus yac
8
gamma-gene reactivation
8
hpfh
6
mice
6

Similar Publications

Combined antiretroviral therapy (cART) has dramatically improved the quality of life for people living with HIV (PLWH). However, over 4 million PLWH are over the age of fifty and experience accompanying HIV-associated neurocognitive disorders (HAND). To understand how HIV impacts the central nervous system, a reliable and feasible model of HIV is necessary.

View Article and Find Full Text PDF

Background: Intervertebral disc degeneration (IVDD) stands as a primary pathophysiological driver of low back pain, yet no therapeutic intervention effectively arrests its progression. Evidence shows that certain Sirt1 agonists may confer protective effects on intervertebral discs, but the underlying mechanisms remain unclear. This study aims to delineate the interaction between Sirt1 and the inflammatory microenvironment, offering potential novel avenues for IVDD prevention and treatment.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive impairment and distinct neuropathological features, including amyloid-β plaques, neurofibrillary tangles, and reactive astrogliosis. Developing effective diagnostic, preventative, and therapeutic strategies for AD necessitates the establishment of animal models that accurately recapitulate the pathophysiological processes of the disease. Existing transgenic mouse models have significantly contributed to understanding AD pathology but often fail to replicate the complexity of human AD.

View Article and Find Full Text PDF

Renal hedgehog interacting protein (Hhip) activates sodium-glucose cotransporter 2 (Sglt2) expression and promotes tubular senescence in murine diabetic kidney disease (DKD), yet its underlying mechanism(s) are poorly understood. Here we study the effect of the SGLT2 inhibitor, canagliflozin on tubulopathy (fibrosis and apoptosis) in Akia/Hhip-transgenic (Tg) mice with overexpression of Hhip in their renal proximal tubular cells (RPTCs) and its relevant mechanisms. The DKD-tubulopathy with pronounced Sglt2 expression was aggravated in the kidney of Akita/Hhip-Tg cf.

View Article and Find Full Text PDF

Histone deacetylase 6 (HDAC6) is an enzyme crucial in epigenetic regulation and protein degradation, with implications in various cancers and neurodegenerative disorders. While HDAC6 is recognized as a promising therapeutic target for Parkinson's and Alzheimer's diseases, its involvement in spinocerebellar ataxias (SCAs) remains underexplored. Currently, there are no direct methods available for characterizing HDAC6 in the brains of living subjects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!