Background: Peptide YY (PYY) and ghrelin are gastrointestinal tract-derived hormones that play roles in the regulation of food intake and energy balance. Negative energy balance often occurs in hospitalized preterm infants.
Methods: To measure serum concentrations of PYY in preterm and full-term infants and to investigate their correlations with anthropometric characteristics, food intake, and serum ghrelin concentrations, we measured serum PYY and ghrelin concentrations by RIA in 62 healthy preterm infants [mean (SD) gestational age, 32.0 (2.1) weeks; postnatal age, 40.9 (14.8) days] and 15 healthy full-term infants of comparable postnatal age. All of the infants were formula-fed every 3 h.
Results: PYY concentrations were significantly higher in preterm [1126.2 (215.4) ng/L] than in full-term infants [825.3 (234.4) ng/L; P < 0.001]. In the entire study population, serum PYY concentrations correlated negatively with gestational age and anthropometric measurements (birth weight, body weight, body length, body mass index, and head circumference) and positively with serum ghrelin concentrations, whereas there was no significant correlation between PYY concentration and caloric intake or weight gain. Multiple regression analysis, after correction for prematurity, revealed that serum PYY concentrations correlated independently with serum ghrelin concentrations and infant body weight or body mass index.
Conclusions: Circulating concentrations of PYY may increase in preterm infants to compensate for the negative body-weight balance. The physiologic mechanisms behind the correlation between PYY and ghrelin remain to be elucidated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1373/clinchem.2005.054908 | DOI Listing |
Clin Nutr
January 2025
Nottingham Digestive Diseases Centre, Division of Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK; National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Queen's Medical Centre, Nottingham, UK; MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK; Division of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. Electronic address:
Background And Aims: This systematic review and meta-analysis aimed to examine the effect of Ramadan intermittent fasting on appetite-regulating hormones including leptin, ghrelin, insulin, gastrin, glucagon-like peptide-1, peptide YY, and cholecystokinin.
Methods: We searched the MEDLINE, Embase, Cochrane Library, CINAHL, Google Scholar, and Web of Science databases to identify relevant research on appetite-regulating hormones during Ramadan intermittent fasting, published until the end of March 2024.
Results: Data from 16 eligible studies comprising 664 participants (341, 51.
J Biol Chem
January 2025
Division of Experimental Animal, Hidaka Branch, Biomedical Research Center, Saitama Medical University, Saitama, Japan; Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan. Electronic address:
Recent success with the use of glucagon-like peptide-1 (GLP-1) receptor analogs and dipeptidyl peptidase-4 (DPP-4) inhibitors for the treatment of patients with diabetes has highlighted the role of the intestine as an endocrine organ. Gut-derived hormones, including GLP-1, glucose-dependent insulinotropic polypeptide (GIP), and ghrelin, have important roles in the control of energy metabolism and food intake, and are associated with the metabolic syndrome. In this study, we isolated and identified a new intestine-derived hormone, betagenin, and showed that it stimulates insulin secretion and β-cell proliferation and suppresses β-cell apoptosis.
View Article and Find Full Text PDFEndocrinology
January 2025
Grupo de Neurofisiología- Instituto Multidisciplinario de Biología Celular (IMBICE) (Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de La Plata, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires), La Plata, Argentina.
Liver-expressed antimicrobial peptide 2 (LEAP2) has recently emerged as a novel hormone that reduces food intake and glycemia by acting through the growth hormone secretagogue receptor (GHSR), also known as the ghrelin receptor. This discovery has led to a fundamental reconceptualization of GHSR's functional dynamics, now understood to be under a dual and opposing regulation. LEAP2 exhibits several distinctive features.
View Article and Find Full Text PDFRev Assoc Med Bras (1992)
January 2025
Yalova University, Faculty of Medicine, Department of Medical Biochemistry, AD - Yalova, Turkey.
Objective: Calorie restriction and exercise are commonly used first interventions to prevent the progression of prediabetes and alleviate the symptoms of type 2 diabetes. Our study was designed to determine the effect of the energy deficit caused by long-term (12-week) calorie restriction and exercise programs on appetite responses in obese individuals with prediabetes and type 2 diabetes.
Methods: Calorie restriction and exercise programs appropriate for age, gender, and work environment were applied to 22 individuals with prediabetes and 22 with type 2 diabetes participating in the study for a period of 12 weeks.
Acta Physiol (Oxf)
February 2025
Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
Aim: Somatostatin from pancreatic δ-cells is a paracrine regulator of insulin and glucagon secretion, but the release kinetics and whether secretion is altered in diabetes is unclear. This study aimed to improve understanding of somatostatin secretion by developing a tool for real-time detection of somatostatin release from individual pancreatic islets.
Methods: Reporter cells responding to somatostatin with cytoplasmic Ca concentration ([Ca]) changes were generated by co-expressing somatostatin receptor SSTR2, the G-protein Gα15 and a fluorescent Ca sensor in HeLa cells.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!