Background: Peptide YY (PYY) and ghrelin are gastrointestinal tract-derived hormones that play roles in the regulation of food intake and energy balance. Negative energy balance often occurs in hospitalized preterm infants.

Methods: To measure serum concentrations of PYY in preterm and full-term infants and to investigate their correlations with anthropometric characteristics, food intake, and serum ghrelin concentrations, we measured serum PYY and ghrelin concentrations by RIA in 62 healthy preterm infants [mean (SD) gestational age, 32.0 (2.1) weeks; postnatal age, 40.9 (14.8) days] and 15 healthy full-term infants of comparable postnatal age. All of the infants were formula-fed every 3 h.

Results: PYY concentrations were significantly higher in preterm [1126.2 (215.4) ng/L] than in full-term infants [825.3 (234.4) ng/L; P < 0.001]. In the entire study population, serum PYY concentrations correlated negatively with gestational age and anthropometric measurements (birth weight, body weight, body length, body mass index, and head circumference) and positively with serum ghrelin concentrations, whereas there was no significant correlation between PYY concentration and caloric intake or weight gain. Multiple regression analysis, after correction for prematurity, revealed that serum PYY concentrations correlated independently with serum ghrelin concentrations and infant body weight or body mass index.

Conclusions: Circulating concentrations of PYY may increase in preterm infants to compensate for the negative body-weight balance. The physiologic mechanisms behind the correlation between PYY and ghrelin remain to be elucidated.

Download full-text PDF

Source
http://dx.doi.org/10.1373/clinchem.2005.054908DOI Listing

Publication Analysis

Top Keywords

ghrelin concentrations
20
full-term infants
16
serum ghrelin
16
body weight
12
pyy ghrelin
12
serum pyy
12
pyy concentrations
12
weight body
12
concentrations
11
pyy
9

Similar Publications

Effects of Ramadan intermittent fasting on hormones regulating appetite in healthy individuals: A systematic review and meta-analysis.

Clin Nutr

January 2025

Nottingham Digestive Diseases Centre, Division of Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK; National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Queen's Medical Centre, Nottingham, UK; MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK; Division of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. Electronic address:

Background And Aims: This systematic review and meta-analysis aimed to examine the effect of Ramadan intermittent fasting on appetite-regulating hormones including leptin, ghrelin, insulin, gastrin, glucagon-like peptide-1, peptide YY, and cholecystokinin.

Methods: We searched the MEDLINE, Embase, Cochrane Library, CINAHL, Google Scholar, and Web of Science databases to identify relevant research on appetite-regulating hormones during Ramadan intermittent fasting, published until the end of March 2024.

Results: Data from 16 eligible studies comprising 664 participants (341, 51.

View Article and Find Full Text PDF

Betagenin ameliorates diabetes by inducing insulin secretion and β-cell proliferation.

J Biol Chem

January 2025

Division of Experimental Animal, Hidaka Branch, Biomedical Research Center, Saitama Medical University, Saitama, Japan; Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan. Electronic address:

Recent success with the use of glucagon-like peptide-1 (GLP-1) receptor analogs and dipeptidyl peptidase-4 (DPP-4) inhibitors for the treatment of patients with diabetes has highlighted the role of the intestine as an endocrine organ. Gut-derived hormones, including GLP-1, glucose-dependent insulinotropic polypeptide (GIP), and ghrelin, have important roles in the control of energy metabolism and food intake, and are associated with the metabolic syndrome. In this study, we isolated and identified a new intestine-derived hormone, betagenin, and showed that it stimulates insulin secretion and β-cell proliferation and suppresses β-cell apoptosis.

View Article and Find Full Text PDF

Critical Insights into LEAP2 Biology and Physiological Functions: Potential Roles Beyond Ghrelin Antagonism.

Endocrinology

January 2025

Grupo de Neurofisiología- Instituto Multidisciplinario de Biología Celular (IMBICE) (Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de La Plata, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires), La Plata, Argentina.

Liver-expressed antimicrobial peptide 2 (LEAP2) has recently emerged as a novel hormone that reduces food intake and glycemia by acting through the growth hormone secretagogue receptor (GHSR), also known as the ghrelin receptor. This discovery has led to a fundamental reconceptualization of GHSR's functional dynamics, now understood to be under a dual and opposing regulation. LEAP2 exhibits several distinctive features.

View Article and Find Full Text PDF

Effect of long-term negative energy on appetite hormone levels in individuals with prediabetes and diabetes.

Rev Assoc Med Bras (1992)

January 2025

Yalova University, Faculty of Medicine, Department of Medical Biochemistry, AD - Yalova, Turkey.

Objective: Calorie restriction and exercise are commonly used first interventions to prevent the progression of prediabetes and alleviate the symptoms of type 2 diabetes. Our study was designed to determine the effect of the energy deficit caused by long-term (12-week) calorie restriction and exercise programs on appetite responses in obese individuals with prediabetes and type 2 diabetes.

Methods: Calorie restriction and exercise programs appropriate for age, gender, and work environment were applied to 22 individuals with prediabetes and 22 with type 2 diabetes participating in the study for a period of 12 weeks.

View Article and Find Full Text PDF

Aim: Somatostatin from pancreatic δ-cells is a paracrine regulator of insulin and glucagon secretion, but the release kinetics and whether secretion is altered in diabetes is unclear. This study aimed to improve understanding of somatostatin secretion by developing a tool for real-time detection of somatostatin release from individual pancreatic islets.

Methods: Reporter cells responding to somatostatin with cytoplasmic Ca concentration ([Ca]) changes were generated by co-expressing somatostatin receptor SSTR2, the G-protein Gα15 and a fluorescent Ca sensor in HeLa cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!