Insulin stimulates the translocation of the glucose transporter GLUT4 from intracellular vesicles to the plasma membrane. In the present study we have conducted a comprehensive proteomic analysis of affinity-purified GLUT4 vesicles from 3T3-L1 adipocytes to discover potential regulators of GLUT4 trafficking. In addition to previously identified components of GLUT4 storage vesicles including the insulin-regulated aminopeptidase insulin-regulated aminopeptidase and the vesicle soluble N-ethylmaleimide factor attachment protein (v-SNARE) VAMP2, we have identified three new Rab proteins, Rab10, Rab11, and Rab14, on GLUT4 vesicles. We have also found that the putative Rab GTPase-activating protein AS160 (Akt substrate of 160 kDa) is associated with GLUT4 vesicles in the basal state and dissociates in response to insulin. This association is likely to be mediated by the cytosolic tail of insulin-regulated aminopeptidase, which interacted both in vitro and in vivo with AS160. Consistent with an inhibitory role of AS160 in the basal state, reduced expression of AS160 in adipocytes using short hairpin RNA increased plasma membrane levels of GLUT4 in an insulin-independent manner. These findings support an important role for AS160 in the insulin regulated trafficking of GLUT4.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M503897200DOI Listing

Publication Analysis

Top Keywords

glut4 vesicles
12
insulin-regulated aminopeptidase
12
glut4
9
rab gtpase-activating
8
gtpase-activating protein
8
protein as160
8
glut4 trafficking
8
plasma membrane
8
basal state
8
role as160
8

Similar Publications

Prostate cancer (PCa) pathogenesis relies on intercellular communication, which can involve tunnelling nanotubes (TNTs) and extracellular vesicles (EVs). TNTs and EVs have been reported to transfer critical cargo involved in cellular functions and signalling, prompting us to investigate the extent of organelle and protein transfer in PCa cells and the potential involvement of the androgen receptor. Using live cell imaging microscopy, we observed extensive formation of TNTs and EVs operating between PCa, non-malignant, and immune cells.

View Article and Find Full Text PDF

Introduction: Advanced glycation end products (AGEs) play a critical role in the development of vascular diseases in diabetes. Although stem cell therapies often involve exposure to AGEs, the impact of this environment on extracellular vesicles (EVs) and endothelial cell metabolism remains unclear.

Methods: Human umbilical cord mesenchymal stem cells (MSCs) were treated with either 0 ng/ml or 100 ng/ml AGEs in a serum-free medium for 48 hours, after which MSC-EVs were isolated.

View Article and Find Full Text PDF

Sexual and Metabolic Differences in Hippocampal Evolution: Alzheimer's Disease Implications.

Life (Basel)

November 2024

Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, Faculty of Health Sciences, University of Jaen, Las Lagunillas University Campus, 23009 Jaen, Spain.

Sex differences in brain metabolism and their relationship to neurodegenerative diseases like Alzheimer's are an important emerging topic in neuroscience. Intrinsic anatomic and metabolic differences related to male and female physiology have been described, underscoring the importance of considering biological sex in studying brain metabolism and associated pathologies. The hippocampus is a key structure exhibiting sex differences in volume and connectivity.

View Article and Find Full Text PDF

Dynamin-2 mutations linked to neonatal-onset centronuclear myopathy impair exocytosis and endocytosis in adrenal chromaffin cells.

J Neurochem

September 2024

Instituto de Fisiología, Biología Molecular y Neurociencias. CONICET. Departamento de Fisiología y Biología Molecular y Celular. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires, Buenos Aires, Argentina.

Dynamins are large GTPases whose primary function is not only to catalyze membrane scission during endocytosis but also to modulate other cellular processes, such as actin polymerization and vesicle trafficking. Recently, we reported that centronuclear myopathy associated dynamin-2 mutations, p.A618T, and p.

View Article and Find Full Text PDF

Genetic deletion of zinc transporter ZnT induces progressive cognitive deficits in mice by impairing dendritic spine plasticity and glucose metabolism.

Front Mol Neurosci

May 2024

Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China.

Article Synopsis
  • Zinc transporter 3 (ZnT) is critical for regulating zinc levels in the brain, and its absence in mice leads to lower zinc levels and cognitive decline over time.
  • The study showed that ZnT knockout mice had increased dendritic complexity but a decrease in mature dendritic spine density, indicating potential issues with synaptic function.
  • Furthermore, ZnT deficiency was linked to reduced expression of key genes involved in insulin signaling, suggesting a connection between low zinc levels, impaired glucose metabolism, and cognitive impairment, which could inform new treatments for neurodegenerative diseases.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!