A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sequential UV-biological degradation of chlorophenols. | LitMetric

Sequential UV-biological degradation of chlorophenols.

Chemosphere

Department of Biotechnology, Lund University, P.O. Box 124, S-221 00 Lund, Sweden.

Published: April 2006

AI Article Synopsis

  • The study investigated the sequential UV-biological degradation of a mixture of chlorophenols, revealing that pollutants were removed in the order of PCP > TCP > DCP > CP, with only CP and DCP remaining after 40 hours.
  • The remaining pollutants were effectively removed through biological treatment using activated sludge, highlighting the importance of UV treatment in reducing toxicity and enhancing biodegradability, which was not achieved with untreated mixtures.
  • However, UV treatment needs to be optimized to prevent the formation of toxic byproducts, and findings from single contaminant studies cannot be directly applied to mixtures.

Article Abstract

The sequential UV-biological degradation of a mixture of 4-chlorophenol (CP), 2,4-dichlorophenol (DCP), 2,4,6-trichlorophenol (TCP), and pentachlorophenol (PCP) was first tested with each pollutant supplied at an initial concentration of 50 mg l(-1). Under these conditions, the chlorophenols were photodegraded in the following order of removal rate: PCP>TCP>DCP>CP with only CP and DCP remaining after 40 h of irradiation. The remaining CP (41 mg l(-1)) and DCP (13 mg l(-1)) were then completely removed by biological treatment with an activated sludge mixed culture. Biodegradation did not occur in similar tests conducted with a non-irradiated mixture due to the high microbial toxicity of the solution. UV treatment lead to a significant reduction of the phytotoxicity to Lipedium sativum but no further reduction of phytotoxicity was observed after biological treatment. Evidence was found that the pollutants were partially photodegraded into toxic and non-biodegradable products. When the pollutants were tested individually (initial concentration of 50 mg l(-1)), PCP, TCP, DCP, 4-CP were photodegraded according to first order kinetic model (r2>99) with half-lives of 2.2, 3.3, 5.7, and 54 h, respectively. The photoproducts were subsequently biodegraded. This study illustrates the potential of UV as pre-treatment for biological treatment in order to remove toxicity and enhance the biodegradability of organic contaminants. However, it also shows that UV treatment must be carefully optimized to avoid the formation of toxic and/or recalcitrant photoproducts and results from studies conducted on single contaminants cannot be extrapolated to mixtures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2005.07.022DOI Listing

Publication Analysis

Top Keywords

biological treatment
12
sequential uv-biological
8
uv-biological degradation
8
initial concentration
8
concentration l-1
8
photodegraded order
8
reduction phytotoxicity
8
treatment
5
degradation chlorophenols
4
chlorophenols sequential
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!