Poly(ethylene terphthalate) (PET) films were photografted under reduced pressure in a solvent-free vapor of acrylamide and a co-initiator, benzophenone. Characterization of grafted samples by ESCA and contact angles showed that the grafting increased with grafting time and temperature. The amide groups obtained by the acrylamide grafting were converted into amine groups by the Hofmann rearrangement to be used in coupling reactions. The amine groups were confirmed by reaction with pentafluorobenzoyl chloride, which provides a fluorine label for ESCA. Surface grafting of polymeric substrates in the vapor phase induced by plasma or high energy and UV irradiation is reviewed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bm050169a | DOI Listing |
Chem Sci
January 2025
College of Chemistry and Chemical Engineering, Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University Shantou 515063 P. R. China
In the past few years, the direct activation of organohalides by ligated boryl radicals has emerged as a potential synthetic tool for cross-coupling reactions. In most existing methods, ligated boryl radicals are accessed from NHC-boranes or amine-boranes. In this work, we report a new photocatalytic platform by modular assembly of readily available amines and diboron esters to access a library of ligated boryl radicals for reaction screening, thus enabling the cross-coupling of organohalides and alkenes including both activated and unactivated ones for C(sp)-C(sp) bond formation by using the assembly of DABCO A1 and BNepB1.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Organic Chemistry, Faculty of Chemistry Urmia University Urmia Iran.
Benzo-fused γ-lactams are fundamental in medicinal chemistry, acting as essential elements for various therapeutic agents due to their structural adaptability and capability to enhance biological activity. In their synthesis, transition metals play a pivotal role as catalysts, offering more efficient alternatives to traditional methods by facilitating C-N bond formation through mechanisms like intramolecular coupling. Recent advances have especially spotlighted transition-metal-catalyzed C-H amination reactions for directly converting C(sp)-H to C(sp)-N bonds, streamlining the creation of these compounds.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
The oxomolybdenum complexes Mo1, Mo2 and Mo3, which share a common ONO donor ligand backbone but differ in their peripheral substituents, were explored to study their reactivity in organic transformations in water. The ligand backbones of Mo1 and Mo2 were covalently linked to a methyl group and a single hydrophobic -hexadecyl chain an ether linkage, respectively. The complex Mo3 was found to possess two -hexadecyl chains attached to the ligand backbone a common amine-N.
View Article and Find Full Text PDFAnal Methods
January 2025
School of Food and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan, 4100114, China.
A non-derivatized high-performance liquid chromatographic (HPLC) method was developed for the simultaneous quantification of hydroxyl acids and their amination products in ammonolysis reaction mixtures. By optimizing the mobile phase composition and pH (0.04 M KHPO-5% methanol, pH = 2.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Peking University Shenzhen Graduate School, Shool of Chemical Biology and Biotechnology, Lishui Road, Nanshan District, -, Shenzhen, CHINA.
Regulating the coordination environment of active sites has proved powerful for tapping into their catalytic activity and selectivity in homogeneous catalysis, yet the heterogeneous nature of copper single-atom catalysts (SACs) makes it challenging. This work reports a bottom-up approach to construct a SAC (rGO@Cu-N(Hx)-C) by inlaying preformed amine coordinated Cu2+ units into reduced graphene oxide (rGO), permitting molecular level revelation on how the proximal N-site functional groups (N-H or N-CH3) impact on the carbon dioxide reduction reaction (CO2RR). It is demonstrated that the N-H moiety of rGO@Cu-NHx-C can serve as an in-situ protonation agent to accelerate the CO2-to-methane reduction kinetics, delivering a methane current density (163 mA/cm2) 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!