Adhesion dynamics, morphology, and organization of 3T3 fibroblast on chitosan and its derivative: the effect of O-carboxymethylation.

Biomacromolecules

College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, PR China.

Published: December 2005

Chitosan and O-carboxymethylchitosan (OCMCS) have been proved to have biocompatibility and have been extensively researched in the field of biomaterials. In this study, Confocal-reflectance interference contrast microscopy (C-RICM) in conjunction with phase contrast imaging was used to investigate the adhesion contact dynamics of 3T3 fibroblasts on chitoan and OCMCS surface-modified silica coverslips. The C-RICM results demonstrate that the weak cell contact forms on OCMCS surface while a much stronger contact area forms on the chitosan surface. 3T3 fibroblasts are found to spread randomly with spindlelike morphology on the chitosan surface, while they exhibit elongated morphology and align on the OCMCS surface. It is believed that fibroblast behaviors such as migration, spreading with an elongated morphology, and alignment on the OCMCS surface are correlated with the weak cell contact. The mechanisms to form cell adhesion contact on chitosan and OCMCS were discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm050328qDOI Listing

Publication Analysis

Top Keywords

ocmcs surface
12
adhesion contact
8
3t3 fibroblasts
8
weak cell
8
cell contact
8
chitosan surface
8
elongated morphology
8
ocmcs
6
chitosan
5
contact
5

Similar Publications

Combined cross-linked enzyme aggregates of cyclodextrin glucanotransferase (CGTase) and maltogenic amylase (Mag1) from Bacillus lehensis G1 (Combi-CLEAs-CM) were successfully developed to synthesis maltooligosaccharides (MOS). Yet, the poor cross-linking performance between chitosan (cross-linker) and enzymes resulting low activity recovery and catalytic efficiency. In this study, we proposed the functionalization of cross-linkers with the integration of computational analysis to study the influences of different functional group on cross-linkers in combi-CLEAs development.

View Article and Find Full Text PDF

Background: Biofilms, such as those from , are generally insensitive to traditional antimicrobial agents, making it difficult to inhibit their formation. Although quercetin has excellent antibiofilm effects, its clinical applications are limited by the lack of sustained and targeted release at the site of infection.

Objectives: Polyethylene glycol-quercetin nanoparticles (PQ-NPs)-loaded gelatin-N,O-carboxymethyl chitosan (N,O-CMCS) composite nanogels were prepared and assessed for the on-demand release potential for reducing biofilm formation.

View Article and Find Full Text PDF

pH-responsive λ-cyhalothrin nanopesticides for effective pest control and reduced toxicity to Harmonia axyridis.

Carbohydr Polym

February 2023

Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China. Electronic address:

In this study, pH-responsive LC@O-CMCS/PU nanoparticles were prepared by encapsulating λ-cyhalothrin (LC) with O-carboxymethyl chitosan (O-CMCS) to form LC/O-CMCS and then covering it with polyurethane (PU). Characterization and performance test results demonstrate that LC@O-CMCS/PU had good alkaline release properties and pesticide loading performance. Compared to commercial formulations containing large amounts of emulsifiers (e.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is one of the most prevalent and aggressive brain tumors for which there is currently no cure. A novel composite nanosystem (CN), consisting of chitosan-coated Solid Lipid Nanoparticles (c-SLN) embedded in O-carboxymethyl chitosan (O-CMCS)-containing nanofibers (NFs), was proposed as a potential tool for the local delivery of lipophilic anti-proliferative drugs. Coacervation was selected as a solvent-free method for the preparation of stearic acid (SA) and behenic acid (BA)-based SLN (SA-SLN and BA-SLN respectively).

View Article and Find Full Text PDF

Polymeric ultrafiltration (UF) membranes often used in membrane bioreactor (MBR) prone to be fouled by fouling agents. Therefore, in this paper, the antifouling characteristics of polyvinylidene fluoride (PVDF) UF membranes for wastewater treatment are improved through modifying membranes by O-carboxymethyl chitosan (OCMCS)-functionalized FeO nanoparticles (OCMCSFeO). The modifier agent was manufactured by the adsorption of OCMCS on FeO nanoparticles, which were synthesized via co-precipitating method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!