Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The authors previously reported that interspecific stimulatory events between Streptomyces species for antibiotic production and/or morphological differentiation mediated by putative diffusible metabolites take place at a high frequency. This paper reports the isolation and characterization of a substance produced by Streptomyces griseus that stimulates the growth and development of Streptomyces tanashiensis. The substance was purified from the culture supernatant of S. griseus by using anion-exchange chromatography, gel filtration chromatography and reverse-phase HPLC. FAB-MS and NMR analyses of the purified preparation indicated the substance to be desferrioxamine E (synonym: nocardamine), a siderophore that is widely produced by Streptomyces species and related organisms. Similar stimulatory effects on the growth and development of S. tanashiensis were exerted by desferrioxamine E produced by another actinomycete strain, but not by other siderophores tested, including ferrichrome and nocobactin and free ferric ion. An exogenous supply of desferrioxamine E stimulated secondary metabolite formation and/or morphological differentiation in various actinomycete strains. Disruption of the desferrioxamine biosynthesis gene cluster in Streptomyces coelicolor A3(2) abolished the production of desferrioxamine E and the activity to stimulate the growth and differentiation of S. tanashiensis. The S. coelicolor mutant showed impaired growth and development on Bennett's/glucose agar medium, but it was rescued by the exogenous supply of desferrioxamine E. These results indicate that desferrioxamines play an important role in streptomycete physiology. Similar to several pathogenic bacteria and fungi, S. tanashiensis may be defective in the production of siderophores; however, it can utilize the siderophores excreted by other organisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/mic.0.28139-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!