Glioblastoma is a fatal brain tumor that becomes highly vascularized by secreting proangiogenic factors and depends on continued angiogenesis to increase in size. Consequently, a successful antiangiogenic therapy should provide long-term inhibition of tumor-induced angiogenesis, suggesting long-term gene transfer as a therapeutic strategy. In this study a soluble vascular endothelial growth factor receptor (sFlt-1) and an angiostatin-endostatin fusion gene (statin-AE) were codelivered to human glioblastoma xenografts by nonviral gene transfer using the Sleeping Beauty (SB) transposon. In subcutaneously implanted xenografts, co-injection of both transgenes showed marked anti-tumor activity as demonstrated by reduction of tumor vessel density, inhibition or abolition of glioma growth, and increase in animal survival (P = 0.003). Using luciferase-stable engrafted intracranial gliomas, the anti-tumor effect of convection-enhanced delivery of plasmid DNA into the tumor was assessed by luciferase in vivo imaging. Sustained tumor regression of intracranial gliomas was achieved only when statin-AE and sFlt-1 transposons were coadministered with SB-transposase-encoding DNA to facilitate long-term expression. We show that SB can be used to increase animal survival significantly (P = 0.008) by combinatorial antiangiogenic gene transfer in an intracranial glioma model.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymthe.2005.07.689DOI Listing

Publication Analysis

Top Keywords

gene transfer
16
combinatorial antiangiogenic
8
antiangiogenic gene
8
nonviral gene
8
transfer sleeping
8
sleeping beauty
8
beauty transposon
8
tumor regression
8
human glioblastoma
8
increase animal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!