Oocytes grow within ovarian follicles, and only gain the ability to complete meiosis when they are nearly fully grown. We have found that both of the major types of intracellular pH regulatory mechanisms in the mammal-the Na+/H+ and HCO3-/Cl- exchangers-were essentially inactive in mouse oocytes over most of the course of their growth. However, as oocytes approached full size, Na+/H+ and HCO3-/Cl- exchangers became simultaneously active, and, at the same time, the intracellular pH of isolated oocytes increased sharply by about 0.25 pH unit. This activation of intracellular pH regulatory mechanisms and increase in pH occurred coincident with the acquisition of meiotic competence. The activation of pH regulatory mechanisms during oocyte growth represents a previously unknown milestone in the development of the capacity of the oocyte to function independently upon ovulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ydbio.2005.08.009DOI Listing

Publication Analysis

Top Keywords

regulatory mechanisms
12
coincident acquisition
8
acquisition meiotic
8
meiotic competence
8
intracellular regulatory
8
na+/h+ hco3-/cl-
8
mechanisms
4
mechanisms regulating
4
intracellular
4
regulating intracellular
4

Similar Publications

Background: Bok is a poorly characterized Bcl-2 protein family member with roles yet to be clearly defined. It is clear, however, that Bok binds strongly to inositol 1,4,5-trisphosphate (IP) receptors (IPRs), which govern the mobilization of Ca from the endoplasmic reticulum, a signaling pathway required for many cellular processes. Also known is that Bok has a highly conserved phosphorylation site for cAMP-dependent protein kinase at serine-8 (Ser-8).

View Article and Find Full Text PDF

Transcriptome sequencing reveals regulatory genes associated with neurogenic hearing loss.

BMC Med Genomics

January 2025

Department of Otolaryngology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, WuHua District, Kunming City, Yunnan Province, China.

Hearing loss is a prevalent condition with a significant impact on individuals' quality of life. However, comprehensive studies investigating the differential gene expression and regulatory mechanisms associated with hearing loss are lacking, particularly in the context of diverse patient samples. In this study, we integrated data from 10 patients across different regions, age groups, and genders, with their data retrieved from a public transcriptome database, to explore the molecular basis of hearing loss.

View Article and Find Full Text PDF

Background: Head and neck squamous cell carcinoma (HNSCC), a highly invasive malignancy with a poor prognosis, is one of the most common cancers globally. Circular RNAs (circRNAs) have become key regulators of human malignancies, but further studies are necessary to fully understand their functions and possible causes in HNSCC.

Methods: CircCCT2 expression levels in HNSCC tissues and cells were measured via qPCR.

View Article and Find Full Text PDF

Background: Muscle and adipose tissue are the most critical indicators of beef quality, and their development and function are regulated by noncoding RNAs (ncRNAs). However, the differential regulatory mechanisms of ncRNAs in muscle and adipose tissue remain unclear.

Results: In this study, 2,343 differentially expressed mRNAs (DEMs), 235 differentially expressed lncRNAs (DELs), 95 differentially expressed circRNAs (DECs) and 54 differentially expressed miRNAs (DEmiRs) were identified in longissimus dorsi muscle (LD), subcutaneous fat (SF) and perirenal fat (VF) in Qinchuan beef cattle.

View Article and Find Full Text PDF

Chloride intracellular channel CLIC3 mediates fibroblast cellular senescence by interacting with ERK7.

Commun Biol

January 2025

Laboratory of Intensive Care, Laboratory for Prevention and Translation of Geriatric Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou, China.

Cellular senescence (CS) is recognized as a critical driver of aging and age-related disorders. Recent studies have emphasized the roles of ion channels as key mediators of CS. Nonetheless, the roles and regulatory mechanisms of chloride intracellular channels (CLICs) during CS remain largely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!