Ground water rights, spatial variation, and transboundary conflicts.

Ground Water

Department of Geography, University of New Mexico, Albuquerque, NM 87131, USA.

Published: January 2006

The goal for any property rights system is to achieve equity, efficiency, and certainty. Trying to achieve these goals for ground water is difficult because a ground water right is not exclusive. To make matters more complicated, ground water is often under the jurisdiction of more than one political unit. The result is transboundary conflicts. Two critical elements must be included in any system of ground water rights. The system must define how the ground water can be used and define the relationships that each user and each use has with the other users and uses in the system. Unfortunately, these relationships are seldom completely defined and are made more complex by the transboundary scales at which they operate. As ground water moves horizontally across boundaries, different users or different jurisdictions have sequential control, creating conflicts between the first users and subsequent ones. Other problems occur because of vertical relationships, with more than one person or entity having control over ground water at the same time. This simultaneous exercise of authority can create conflicts between an individual who possesses a right to use ground water and a state or federal agency that regulates the same water. Transboundary conflicts occur at different scales and include conflicts between neighboring property owners as well as conflicts between countries. Scale, the property rights structure, and the nature of the relationship between users influence the way transboundary ground water conflicts are resolved.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1745-6584.2005.00067.xDOI Listing

Publication Analysis

Top Keywords

ground water
40
transboundary conflicts
12
ground
10
water
10
water rights
8
conflicts
8
property rights
8
rights system
8
transboundary
5
rights
4

Similar Publications

Extensive agricultural regions commonly face issues of poor groundwater management, non-standard agricultural production practices, and unordered discharge of domestic pollution, leading to a continuous decline in groundwater quality and a sharp increase in risks. A comprehensive understanding of groundwater conditions and pollution is a crucial step in effectively addressing the water quality crisis. This study employs the Comprehensive Water Quality Index, Irrigation parameter, and Pollution Index to comprehensively investigate the groundwater quality in a typical agricultural area in Shandong, China, and assesses the suitability of groundwater for irrigation and the risks to human health.

View Article and Find Full Text PDF

Suspect and Nontarget Analysis of Per- and Polyfluoroalkyl Substances in Groundwater Underlying Different Land-Use Areas.

Environ Sci Technol

January 2025

MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China.

Groundwater can be contaminated by PFAS emissions, yet research on the presence and associated risks of PFAS in groundwater underlying different land-use areas remains limited. Herein, high-resolution mass spectrometry-based suspect and nontarget analyses were performed to determine PFAS occurrence in groundwater samples obtained from a rural area, a planting region, and the vicinities of a pharmaceutical park, an airport, and an industrial park in Datong City, China. A total of 31 PFAS (16 emerging and 15 legacy PFAS) were identified, and the ΣPFAS concentrations ranged from 0.

View Article and Find Full Text PDF

The pollution index is a helpful tool for assessing the quality of groundwater. To assess the water quality in the southern segment of Barmer District (Rajasthan), India, we collected 20 samples of groundwater from the post-monsoon 2021 and pre-monsoon 2022 periods. Physicochemical parameters such as pH, electrical conductivity (EC), total hardness, Cl, SO, F, NO, total dissolved solids, Ca, and Mg were analyzed.

View Article and Find Full Text PDF

Quantification of the non-linear relationship between arsenic (As) and physico-chemical parameters in groundwater through a Self-Organizing Map (SOM) was performed for the first time in Chapai-Nawabganj, Bangladesh. Due to the continuous assessment of groundwater quality, the spatial distribution of As with associated elements was observed for the aerial extent of contaminated groundwater. The results exhibited that 57 % and 31 % of groundwater samples (n = 35) exceeded the allowable limit of As according to the WHO recommended drinking water standard (10 μg/L) and Bangladesh Drinking Water Standard (BDWS) (50 μg/L), respectively.

View Article and Find Full Text PDF

This research addresses the gap in efficient thawing methods by investigating the effects of ohmic thawing variables and freezing methods on the thawing speed and quality attributes of ground turkey breast, aiming to identify the optimal ohmic thawing method and compare it with traditional air and water thawing techniques. The variables for ohmic thawing consisted of voltage gradient (10, 15, and 20 V/cm), freezing method (Snap (rapid freezing of samples in liquid nitrogen at -210 °C), -70, and -20 °C), and probe type. The results showed that the snap-freezing method demonstrated superior functional and quality characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!