ATP-binding cassette (ABC) transporters are involved in a variety of physiologic processes such as xenobiotic defense, lipid metabolism, ion homeostasis and immune functions. A large number of ABC proteins have been causatively linked to rare and common human genetic diseases including familial high-density lipoprotein deficiency, retinopathies, cystic fibrosis, diabetes and cardiomyopathies. Furthermore, genetic variations in ABC transporter genes and dysregulated expression patterns of these molecules significantly contribute to drug resistance in human cancer cells and alter the pharmacokinetic properties of a variety of drugs. In order to analyze DNA sequence alterations or define disease-associated mRNA expression patterns of the complete ABC transporter superfamily, novel high-throughput molecular methods such as quantitative real-time PCR and DNA microarray analysis are emerging. The aim of this review is to provide an overview and to present some examples of human ABC transporters involved in monogenic diseases, cancer and pharmacogenetics. Methodologic aspects of molecular diagnostics applied to analyze genetic variations, mRNA and protein expression levels and functional characteristics of ABC transporters are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1586/14737159.5.5.755 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!