Respiratory tissues can be damaged by the exposure of airway epithelial cells to reactive oxygen species that generate oxidative stress. We studied the effects of the hydroxyl radical *OH, for which there is no natural intra- or extracellular scavenger, on a Ca(2+)-activated chloride channel (CACC) that participates in Cl(-) secretion in the apical membrane of airway epithelial cells. We identified and characterized CACC in cell-attached and in inside-out excised membrane patches from the apical membrane of cultured nonciliated human nasal epithelial cells. In these cells, the CACC was outwardly rectified, Ca(2+)/calmodulin-kinase II, and voltage dependent. The channel was activated in cell-attached and inside-out patches in a bath solution containing millimolar [Ca(2+)] and ran down quickly. The channel was reversibly or irreversibly activated by exposure of the internal surface of the membrane to *OH, which depended on the concentration and the duration of exposure to H(2)O(2). CACC activity evoked by oxidative stress was inhibited by 1,3-dimethyl-2-thiurea, an antioxidant that scavenges hydroxyl radicals, and by the reduced form of glutathione. The oxidized SH residues could be close to the Ca(2+)/calmodulin kinase site. The reversible or irreversible activation of CACC after a period of oxidative stress without change in [Ca(2+)] is a new observation. CACC play a direct role in mucus production by goblet cells and may thus contribute to the pathogenesis of asthma.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplung.00351.2004DOI Listing

Publication Analysis

Top Keywords

epithelial cells
16
oxidative stress
12
ca2+-activated chloride
8
membrane cultured
8
cultured nonciliated
8
nonciliated human
8
human nasal
8
nasal epithelial
8
airway epithelial
8
apical membrane
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!