The Fgf8 gene encodes a series of secreted signalling molecules important in the normal development of the face, brain and limbs. The genomic structure of the chick Fgf8 gene has been analysed and compared to the human and mouse sequences. Divergence between the chick, human and mouse genomic structure was observed. Data indicates that the long alternatively spliced form of exon 1b observed in mouse and exon 1c observed in human and mouse do not exist in the chick Fgf8 gene. RT-PCR analysis indicates that chick Fgf8, like its mouse and human counterpart is alternatively spliced. This data along with the genomic structure data indicates that in the chick there are only two isoforms of Fgf8. This is in contrast to the human and mouse, where evidence suggests that there are 4 and 8 isoforms, respectively. Approximately 400 bp of intron 1d is highly conserved between chick, human and mouse genomic sequences. Using TRANSFAC possible conserved regulatory element binding sites within this domain were identified.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10425170500069973 | DOI Listing |
Surv Ophthalmol
January 2025
Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India; Prof. Krothapalli Ravindranath Ophthalmic Research Biorepository, LV Prasad Eye Institute, Hyderabad, Telangana, India.
Extracellular vesicles (EVs), defined as membrane-bound vesicles released from all cells, are being explored for their diagnostic and therapeutic role in dry eye disease (DED). We systematically shortlisted 32 articles on the role of EVs in diagnosing and treating DED. The systematic review covers the progress in the last 2 decades about the classification and isolation of EVs and their role in DED.
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
January 2025
Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China; Beijing Institute of Traditional Chinese Medicine, Beijing, China. Electronic address:
Vitiligo is a common chronic skin depigmentation disorder that seriously decreases the patients' overall quality of life. Human blood metabolites could contribute to unraveling the underlying biological mechanisms of vitiligo. We used GWAS summary statistics to assess the causal association between genetically predicted 1,400 serum metabolites and vitiligo risk by Mendelian randomization (MR).
View Article and Find Full Text PDFLife Sci
January 2025
Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. Electronic address:
The dysfunction of the endothelial lining in lesion-prone areas of the arterial vasculature significantly contributes to the pathobiology of atherosclerotic cardiovascular disease. Recent studies suggested that UDP-glucose pyrophosphorylase 2 (UGP2) plays a role in cell proliferation and survival. This study investigates the anti-apoptotic and anti-atherogenic effects of UGP2 both in vitro and in vivo.
View Article and Find Full Text PDFMatrix Biol
January 2025
Department of Surgery, Emory University, Atlanta, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Research Services, Atlanta VA Medical Center, Decatur, GA, USA. Electronic address:
Arterial endothelial cells (ECs) reside in a complex biomechanical environment. ECs sense and respond to wall shear stress. Low and oscillatory wall shear stress is characteristic of disturbed flow and commonly found at arterial bifurcations and around atherosclerotic plaques.
View Article and Find Full Text PDFCell Metab
January 2025
Henan Academy of Sciences, Zhengzhou 450000, China; Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. Electronic address:
Cellular senescence, a hallmark of aging, involves a stable exit from the cell cycle. Senescent cells (SnCs) are closely associated with aging and aging-related disorders, making them potential targets for anti-aging interventions. In this study, we demonstrated that human embryonic stem cell-derived exosomes (hESC-Exos) reversed senescence by restoring the proliferative capacity of SnCs in vitro.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!