Nowadays, a wide array of procedures in mouse technology has been made available to researchers in order to establish valuable models for the study of gene function. The efficiency of gene transfer and gene targeting as methods for producing genetic changes in mice, in addition to continuous advances in molecular biology tools, has converted the mouse into the major experimental model for the study of mammalian physiology. In recent years, the emergence of site-specific recombinases as tools to engineer mammalian genomes has opened new avenues into the design of genetically modified mouse models. The original Cre and FLP recombinases have demonstrated their utility in developing conditional gene targeting, and now other analogous recombinases are also ready to be used, in the same way or in combined strategies, to achieve more sophisticated experimental schemes for addressing complex biological questions. The properties of site-specific recombinases in combination with other biotechnological tools (tet on/off system, siRNA mediated gene silencing, fluorescent proteins, et al.) make them useful instruments to induce precise mutations in specific cells or tissues in a time-controlled manner. This ability can be applied in functional genomics in several ways: from conditional and inducible gene targeting to controlled expression of transgenes and recombination-mediated cassette exchange in mouse models for the study of development or disease phenotypes. This review focuses on the use of site-specific recombinases for mouse genome manipulation. A historical perspective of site-specific recombinases is considered and a number of strategies for achieving inducible or conditional genomic manipulations are contemplated in the context of current techniques for producing genetically modified mice. Finally, several model generation approaches from recent examples in the literature are revised.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2741/1867 | DOI Listing |
Biotechnol J
January 2025
Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA.
The implementation of site-specific integration (SSI) systems in Chinese hamster ovary (CHO) cells for the production of monoclonal antibodies (mAbs) can alleviate concerns associated with production instability and reduce cell line development timelines. SSI cell line performance is driven by the interaction between genomic integration location, clonal background, and the transgene expression cassette, requiring optimization of all three parameters to maximize productivity. Systematic comparison of these parameters has been hindered by SSI platforms involving low-throughput enrichment strategies, such as cell sorting.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, 165 Rue Marianne Grunberg-Manago, campus Paul Sabatier, 118, route de Narbonne, 31062, Toulouse Cedex, France.
Bacterial genomes contain a plethora of secondary replicons of divergent size. Circular replicons must carry a system for resolving dimeric forms, resulting from recombination between sister copies. These systems use site-specific recombinases.
View Article and Find Full Text PDFStem Cells
January 2025
Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom.
To enable robust expression of transgenes in stem cells, recombinase-mediated cassette exchange at safe harbor loci is frequently adopted. The choice of recombinase enzyme is a critical parameter to ensure maximum efficiency and accuracy of the integration event. We have explored the serine recombinase family of site-specific integrases and have directly compared the efficiency of PhiC31, W-beta, and Bxb1 integrase for targeted transgene integration at the Gt(ROSA)26Sor locus in mouse embryonic stem cells.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 165 Rue Marianne Grunberg-Manago, 31400 Toulouse, France.
Antibiotic-resistant infections are a pressing clinical challenge. Plasmids are known to accelerate the emergence of resistance by facilitating horizontal gene transfer of antibiotic resistance genes between bacteria. We explore this question in Acinetobacter baumannii, a globally emerging nosocomial pathogen responsible for a wide range of infections with a worrying accumulation of resistance, particularly involving plasmids.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio.3.
Cre, a conservative site-specific tyrosine recombinase, is a powerful gene editing tool in the laboratory. Expanded applications in human health are hindered by lack of understanding of the mechanism by which Cre selectively binds and recombines its cognate sequences. This knowledge is essential for retargeting the enzyme to new sites and for mitigating effects of off-target recombination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!