An efficient reagent for the phosphorylation of deoxyribonucleosides, DNA oligonucleotides, and their thermolytic analogues.

Org Lett

Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, 8800 Rockville Pike, Bethesda, Maryland 20892, USA.

Published: September 2005

[reaction: see text] The phosphoramidite 11 was prepared in three steps from methyl 2-mercaptoacetate and demonstrated efficiency in the synthesis of conventional 5'-/3'-phosphate/thiophosphate monoester derivatives of 2'-deoxyribonucleosides and DNA oligonucleotides. Moreover, the use of 11 has enabled the preparation of the dinucleoside phosphorothioate analogue 26 in high yields (>95%) with minimal cleavage (<2%) of the thermolytic thiophosphate protecting group.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ol0516263DOI Listing

Publication Analysis

Top Keywords

dna oligonucleotides
8
efficient reagent
4
reagent phosphorylation
4
phosphorylation deoxyribonucleosides
4
deoxyribonucleosides dna
4
oligonucleotides thermolytic
4
thermolytic analogues
4
analogues [reaction
4
[reaction text]
4
text] phosphoramidite
4

Similar Publications

Oligonucleotide therapeutics, including antisense oligonucleotides and small interfering RNA, offer promising avenues for modulating the expression of disease-associated proteins. However, challenges such as nuclease degradation, poor cellular uptake, and unspecific targeting hinder their application. To overcome these obstacles, spherical nucleic acids have emerged as versatile tools for nucleic acid delivery in biomedical applications.

View Article and Find Full Text PDF

Therapeutic human papillomavirus (HPV) DNA vaccine is an attractive option to control existed HPV infection and related lesions. The two early viral oncoproteins, E6 and E7, are continuously expressed in most HPV-related pre- and cancerous cells, and are ideal targets for therapeutic vaccines. We have previously developed an HPV 16 DNA vaccine encoding a modified E7/HSP70 (mE7/HSP70) fusion protein, which demonstrated significant antitumor effects in murine models.

View Article and Find Full Text PDF

The close genetic resemblance between Listeria monocytogenes and Listeria innocua, combined with their presence in similar environments, poses challenges for species-specific detection in food products. Ensuring food safety through microbiological standards necessitates reliable detection of pathogens like L. monocytogenes and L.

View Article and Find Full Text PDF

DNA double crossover (DX) motifs including DAE (double crossover, antiparallel, even spacing) and DAO (double crossover, antiparallel, odd spacing) are well-known monolayered DNA building blocks for construction of 2D DNA arrays and tubes in nanoscale and microscale. Compared to the 3D architectures of DNA origami and single-stranded DNA bricks to build nanoscale 3D bundles, tessellations, gears, castles, etc., designs of double- and multi-layers of DX motifs for 3D architectures are still limited.

View Article and Find Full Text PDF

Modulation of CRISPR-Cas9 cleavage with an oligo-ribonucleoprotein design.

Chembiochem

January 2025

National University of Singapore, Chemical and Biomolecular Engineering, Block E5 #02-09, 4 Engineering Drive 4, 117585, Singapore, SINGAPORE.

Clustered regularly interspaced short palindromic repeats (CRISPR) associated protein Cas9 system has been widely used for genome editing. However, the editing or cleavage specificity of CRISPR Cas9 remains a major concern due to the off-target effects. The existing approaches to control or modulate CRISPR Cas9 cleavage include engineering Cas9 protein and development of anti-CRISPR proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!