N-n-octylnicotinium iodide (NONI) and N-n-decylnicotinium iodide (NDNI) are selective nicotinic receptor (nAChR) antagonists mediating nicotine-evoked striatal dopamine (DA) release, and inhibiting [3H]nicotine binding, respectively. This study evaluated effects of introducing unsaturation into the N-n-alkyl chains of NONI and NDNI on inhibition of [3H]nicotine and [3H]methyllycaconitine binding (alpha4beta2* and alpha7* nAChRs, respectively), (86)Rb+ efflux and [3H]DA release (agonist or antagonist effects at alpha4beta2* and alpha6beta2*-containing nAChRs, respectively). In the NONI series, introduction of a C3-cis- (NONB3c), C3-trans- (NONB3t), C7-double-bond (NONB7e), or C3-triple-bond (NONB3y) afforded a 4-fold to 250-fold increased affinity for [3H]nicotine binding sites compared with NONI. NONB7e and NONB3y inhibited nicotine-evoked 86Rb+ efflux, indicating alpha4beta2* antagonism. NONI analogs exhibited a 3-fold to 8-fold greater potency inhibiting nicotine-evoked [3H]DA overflow compared with NONI (IC50 = 0.62 microM; Imax = 89%), with no change in Imax, except for NONB3y (Imax = 50%). In the NDNI series, introduction of a C4-cis- (NDNB4c), C4-trans-double-bond (NDNB4t), or C3-triple-bond (NDNB3y) afforded a 4-fold to 80-fold decreased affinity for [3H]nicotine binding sites compared with NDNI, whereas introduction of a C9 double-bond (NDNB9e) did not alter affinity. NDNB3y and NDNB4t inhibited nicotine-evoked 86Rb+ efflux, indicating antagonism at alpha4beta2* nAChRs. Although NDNI had no effect, NDNB4t and NDNB9e potently inhibited nicotine-evoked [3H]DA overflow (IC50 = 0.02-0.14 microM, Imax = 90%), as did NDNB4c (IC50 = 0.08 microM; Imax = 50%), whereas NDNB3y showed no inhibition. None of the analogs had significant affinity for alpha7* nAChRs. Thus, unsaturated NONI analogs had enhanced affinity at alpha4beta2*- and alpha6beta2*-containing nAChRs, however a general reduction of affinity at alpha4beta2* and an uncovering of antagonist effects at alpha6beta2*-containing nAChRs were observed with unsaturated NDNI analogs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2751509 | PMC |
http://dx.doi.org/10.1208/aapsj070119 | DOI Listing |
J Neuroinflammation
July 2013
Alzheimer Neurobiology Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Novum Floor-5, Stockholm S-14186, Sweden.
Background: The pathological features in Alzheimer's disease (AD) brain include the accumulation and deposition of β-amyloid (Aβ), activation of astrocytes and microglia and disruption of cholinergic neurotransmission. Since the topographical characteristics of these different pathological processes in AD brain and how these relate to each other is not clear, this motivated further exploration using binding studies in postmortem brain with molecular imaging tracers. This information could aid the development of specific biomarkers to accurately chart disease progression.
View Article and Find Full Text PDFBiochem Pharmacol
September 2013
Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, 465 Biological Pharmaceutical Complex, Lexington, KY 40536-0596, USA.
Tobacco smoking is the leading preventable cause of death in the United States. A major negative health consequence of chronic smoking is hypertension. Untoward addictive and cardiovascular sequelae associated with chronic smoking are mediated by nicotine-induced activation of nicotinic receptors (nAChRs) within striatal dopaminergic and hypothalamic noradrenergic systems.
View Article and Find Full Text PDFJ Neural Transm (Vienna)
May 2012
Department of Psychiatry and Psychotherapy, Heinrich-Heine-University Duesseldorf, 40620 Duesseldorf, Germany.
Heavy smoking and schizophrenia are diversely associated with nicotinic acetylcholine receptor expression, as was shown for brain and lymphocytes. Most studies so far have not systematically differentiated between schizophrenia smokers and non-smokers and were confined either to in vivo or post-mortem study approaches. In order to avoid variable in vivo influences or post-mortem bias, we used stably transformed B-lymphoblast cultures derived from healthy and schizophrenia subjects stratified for smoking versus non-smoking in order to differentiate these clinical conditions with regard to nicotinic acetylcholine receptor expression and regulation.
View Article and Find Full Text PDFAuton Neurosci
December 2008
Department of Pathology, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts 02115, USA.
Maternal cigarette smoking during pregnancy adversely affects fetal development and increases the risk for the sudden infant death syndrome (SIDS). In SIDS we have reported abnormalities in the medullary serotonergic (5-HT) system, which is vital for homeostatic control. In this study we analyzed the inter-relationship between nicotinic receptors (nAChRs), to which nicotine in cigarette smoke bind, and the medullary 5-HT system in the human fetus and infant as a step towards determining the mechanisms whereby smoking increases SIDS risk in infants with 5-HT defects.
View Article and Find Full Text PDFA population of outbred mice of the ICR strain was divided into two subpopulations according to their high (EH mice) or low (EL mice) exploratory efficacy in the closed cross maze test. In addition, the EH and EL mice differed in the number of binding sites of (i) [G-3H]-MK-801 with NMDA receptors from hippocampus and (ii) [G-3H]-nicotine with nicotine cholinoreceptors (nACh) from neocortex. A subchronic administration of the cognition enhancer piracetam (200 mg/kg, once per day for 5 days) increased by 70% the number of binding sites of NMDA receptors in the EL mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!