The CCU and Incubator are habitats under development by SSBRP for gravitational biology research on ISS. They will accommodate multiple specimen types and reside in either Habitat Holding Racks, or the Centrifuge Rotor, which provides selectable gravity levels of up to 2 g. The CCU can support multiple Cell Specimen Chambers, CSCs (18, 9 or 6 CSCs; 3, 10 or 30 mL in volume, respectively). CSCs are temperature controlled from 4-39 degrees C, with heat shock to 45 degrees C. CCU provides automated nutrient supply, magnetic stirring, pH/O2 monitoring, gas supply, specimen lighting, and video microscopy. Sixty sample containers holding up to 2 mL each, stored at 4-39 degrees C, are available for automated cell sampling, subculture, and injection of additives and fixatives. CSCs, sample containers, and fresh/spent media bags are crew-replaceable for long-term experiments. The Incubator provides a 4-45 degrees C controlled environment for life science experiments or storage of experimental reagents. Specimen containers and experiment unique equipment are experimenter-provided. The Specimen Chamber exchanges air with ISS cabin and has 18.8 liters of usable volume that can accommodate six trays and the following instrumentation: five relocatable thermometers, two 60 W power outlets, four analog ports, and one each relative humidity sensor, video port, ethernet port and digital input/output port.

Download full-text PDF

Source

Publication Analysis

Top Keywords

space station
8
cell culture
8
ccu incubator
8
4-39 degrees
8
sample containers
8
specimen
5
station biological
4
biological project
4
project ssbrp
4
cell
4

Similar Publications

The MISSE-Seed project was designed to investigate the effects of space exposure on seed quality and storage. The project tested the Multipurpose Materials International Space Station Experiment-Flight Facility (MISSE-FF) hardware as a platform for exposing biological samples to the space environment outside the International Space Station (ISS). Furthermore, it evaluated the capability of a newly designed passive sample containment canister as a suitable exposure unit for biological samples for preserving their vigor while exposing to the space environment to study multi-stressor effects.

View Article and Find Full Text PDF

Identifying the origins of storm fluvial particulate organic carbon (POC) provides information about the hydrological connectivity within the river corridor and the roles of the land-stream interface in the carbon cycle. However, current understanding of storm-induced POC source dynamics is constrained by observations limited in space and time. This study presents a unique approach integrating higher spatial and temporal resolution sampling with a multi-biomarker analysis to better understand POC source dynamics across scales.

View Article and Find Full Text PDF

Large-scale and long-term wildlife research and monitoring using camera traps: a continental synthesis.

Biol Rev Camb Philos Soc

January 2025

Wildlife Observatory of Australia (WildObs), Queensland Cyber Infrastructure Foundation (QCIF), Brisbane, Queensland, 4072, Australia.

Camera traps are widely used in wildlife research and monitoring, so it is imperative to understand their strengths, limitations, and potential for increasing impact. We investigated a decade of use of wildlife cameras (2012-2022) with a case study on Australian terrestrial vertebrates using a multifaceted approach. We (i) synthesised information from a literature review; (ii) conducted an online questionnaire of 132 professionals; (iii) hosted an in-person workshop of 28 leading experts representing academia, non-governmental organisations (NGOs), and government; and (iv) mapped camera trap usage based on all sources.

View Article and Find Full Text PDF

The Role of the LINC Complex in Ageing and Microgravity.

Mech Ageing Dev

January 2025

Department Oral & Maxillofacial Surgery/Pathology, Amsterdam Movement Sciences & Amsterdam Bone Center (ABC), Amsterdam University Medical Center location Vrije Universiteit Amsterdam & Academic Center for Dentistry Amsterdam (ACTA), Gustav Mahlerlaan 3004, 1081 LA Amsterdam, the Netherlands; TEC-MMG-LIS Lab, European Space Agency (ESA), European Space Research and Technology Center (ESTEC), Keplerlaan 1, 2201 AZ Noordwijk, the Netherlands.

The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex plays a crucial role in connecting the nuclear envelope to the cytoskeleton, providing structural support to the nucleus and facilitating mechanical signaling between the extracellular environment and the nucleus. Research in mechanobiology onboard the International Space Station (ISS) and in simulated microgravity (SMG) highlight the importance of gravity in functional mechanotransduction. Although the altered gravity research regarding mechanobiology has been greatly focused on the cytoskeleton and the extracellular matrix (ECM), recent research demonstrates that SMG also induces changes in nuclear mechanics and gene expression patterns, which have been shown to be LINC complex dependent.

View Article and Find Full Text PDF

In recent decades, evidence of interactions between aboveground and belowground (i.e., soil) subsystems has accumulated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!