Objective: The purpose of this study was to evaluate a novel disposable lead-free radiation protection drape for decreasing radiation scatter during electrophysiology procedures.
Background: In recent years, there has been an exponential increase in the number of electrophysiology (EP) procedures exposing patients, operators and laboratory staff to higher radiation doses.
Methods: The RADPAD was positioned slightly lateral to the incision site for pectoral device implants and superior to the femoral vein during electrophysiology studies. Each patient served as their own control and dosimetric measurements were obtained at the examiner's elbow and hand. Radiation badge readings for the operator were obtained three months prior to RADPAD use and three months after introduction.
Results: Radiation dosimetry was obtained in twenty patients: 7 electrophysiology studies, 6 pacemakers, 5 catheter ablations, and 2 implantable cardioverter-defibrillators. Eleven women and nine men with a mean age of 63 +/- 4 years had an average fluoroscopy time of 2.5 +/- 0.42 minutes per case. Mean dosimetric measurements at the hand were reduced from 141.38 +/- 24.67 to 48.63 +/- 9.02 milliroentgen (mR) per hour using the protective drape (63% reduction; p < 0.0001). Measurements at the elbow were reduced from 78.78 +/- 7.95 mR per hour to 34.50 +/- 4.18 mR per hour using the drape (55% reduction; p < 0.0001). Badge readings for three months prior to drape introduction averaged 2.45 mR per procedure versus 1.54 mR per procedure for 3 months post-initiation (37% reduction).
Conclusion: The use of a novel radiation protection surgical drape can significantly reduce scatter radiation exposure to staff and operators during a variety of EP procedures.
Download full-text PDF |
Source |
---|
Mutat Res Rev Mutat Res
January 2025
Radiation Epidemiology Branch, National Cancer Institute, MD 20892-9778, USA; Faculty of Health, Science and Technology, Oxford Brookes University, Headington Campus, OX3 0BP, UK.
Biological effects of ionizing radiation vary not merely with total dose but also with temporal dose distribution. Sparing dose protraction effects, in which dose protraction reduces effects of radiation have widely been accepted and generally assumed in radiation protection, particularly for stochastic effects (e.g.
View Article and Find Full Text PDFAppl Radiat Isot
January 2025
School of Physics and Electronic Engineering, Sichuan University of Science and Engineering, Yibin, 644005, China.
The three-dimensional radiation field is an important database reflecting the radioactivity distribution in a nuclear facility. It is of great significance to accurately and quickly grasp the radiation dose field distribution to implement radiation protection. Presently, majority of radiation field reconstruction algorithms concentrate on two-dimensional reconstruction and can only measure on a regular grid.
View Article and Find Full Text PDFPhys Med Biol
January 2025
Department of Physics, Aristotle University of Thessaloniki, University Campus, Thessaloniki, 54124, GREECE.
Magnetic nanoparticle hyperthermia (MNH) emerges as a promising therapeutic strategy for cancer treatment, leveraging alternating magnetic fields (AMFs) to induce localized heating through magnetic nanoparticles (MNPs). However, the interaction of AMFs with biological tissues leads to non-specific heating caused by eddy currents, triggering thermoregulatory responses and complex thermal gradients throughout the body of the patient. While previous studies have implemented the Atkinson-Brezovich limit to mitigate potential harm, recent research underscores discrepancies between this threshold and clinical outcomes, necessitating a re-evaluation of this safety limit.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P. R. China.
A thorium-carbon double bond that corresponds to the sum of theoretical covalent double bond radii has long been sought after in the study of actinide-ligand multiple bonding as a synthetic target. However, the stabilization of this chemical bond remains a great challenge to date, in part because of a relatively poor energetic matching between 5f-/6d- orbitals of thorium and the 2s-/2p- frontier orbitals of carbon. Herein, we report the successful synthesis of a thorium-carbon double bond in a carbon-bridged actinide-transition metal cluster, i.
View Article and Find Full Text PDFPediatr Radiol
January 2025
E. B. Singleton Department of Radiology, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA.
Cardiac computed tomography angiography (CTA) is a valuable tool in the assessment of congenital and acquired cardiac disease in children. The goal of cardiac CTA is to produce images that are free of motion and provide sufficient characterization of the anatomy in question. Given the complexity of pediatric patient characteristics, including patient size, heart rate, breath-holding capability, and variant anatomy, cardiac CTA technique must be individualized to the patient as well as the indication to answer the clinical question while also minimizing radiation exposure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!