We examined the presence of phosphatase and tensin homolog deleted from chromosome 10 (PTEN) abnormalities that could contribute to the origin or progression of naturally occurring canine endothelial tumors (hemangiosarcoma). Our results document somatic point mutations or deletions encompassing the PTEN C-terminal domain in canine hemangiosarcoma that might provide cells a survival advantage within their microenvironment. This represents the first characterization of a naturally occurring, highly metastatic tumor with biologically significant mutations of PTEN in the C-terminal domain.

Download full-text PDF

Source
http://dx.doi.org/10.1354/vp.42-5-618DOI Listing

Publication Analysis

Top Keywords

phosphatase tensin
8
tensin homolog
8
homolog deleted
8
deleted chromosome
8
canine hemangiosarcoma
8
naturally occurring
8
pten c-terminal
8
c-terminal domain
8
mutations phosphatase
4
chromosome canine
4

Similar Publications

Glucose-6-phosphate dehydrogenase (G6PD) is the rate-limiting enzyme in the pentose phosphate pathway (PPP) in glycolysis. Glucose metabolism is closely implicated in the regulation of mitophagy, a selective form of autophagy for the degradation of damaged mitochondria. The PPP and its key enzymes such as G6PD possess important metabolic functions, including biosynthesis and maintenance of intracellular redox balance, while their implication in mitophagy is largely unknown.

View Article and Find Full Text PDF

Background: The roles of the Pink1/Parkin pathway and mitophagy in lung injury during heat stroke remain unclear. In this study, we investigated the role of Pink1/Parkin-mediated mitophagy in acute lung injury (ALI) in rats with exertional heat stroke (EHS).

Methods: Sixty Sprague Dawley rats were randomly divided into control (CON), control + Parkin overexpression (CON + Parkin), EHS, and EHS + Parkin overexpression (EHS + Parkin) groups.

View Article and Find Full Text PDF

Background: High-grade serous ovarian cancer (HGSOC) accounts for 70-80% of all ovarian cancer-related deaths. Multiple studies have suggested that the fallopian tube epithelium (FTE) serves as the cell of origin of HGSOC. Phosphatase and tensin homolog () is a tumor suppressor and its loss is sufficient to induce numerous tumorigenic changes in FTE, including increased migration, formation of multicellular tumor spheroids (MTSs), and ovarian colonization.

View Article and Find Full Text PDF

Downregulation of the Phosphatase PHLPP1 Contributes to NNK-induced Malignant Transformation of Human Bronchial Epithelial Cells (HBECs).

J Biol Chem

January 2025

Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University; Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China. Electronic address:

Cigarette smoking (CS) is one of the greatest health concerns, which can cause lung cancer. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a tobacco-specific nitrosamine, and has been well-documented for its carcinogenic activity in both epidemiological and laboratory studies. PH domain leucine-rich repeat protein phosphatase 1 (PHLPP1) and phosphatase and tensin homolog (PTEN) are two well-known phosphatase tumor suppressors that have been reported to be downregulated in human lung cancer tissues.

View Article and Find Full Text PDF

Background: The inheritance of the short allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!