Regulation of the constitutively expressed type 2 bradykinin (B2) receptor, which mediates the principal actions of bradykinin, occurs at multiple levels. The goal of the current study was to determine whether the human B2 3'-untranslated region (UTR) has effects on gene expression, with particular focus on the variable number of tandem repeats (B2-VNTR) polymorphic portion of the 3'-UTR and its flanking AU-rich elements (AREs). When inserted downstream of the luciferase coding region of the pGL3-Promoter vector, the B2-VNTR reduced reporter gene activity by 85% compared with pGL3-Promoter alone (promoter control; P < 0.001), an effect that was not appreciably affected by mutation of the flanking AREs. The negative regulatory effects of the B2-VNTR region were position and orientation dependent and strongly positively correlated with the number of tandem repeats in the B2-VNTR region (r = 0.85, P < 0.001). With respect to mechanism, quantitative RT-PCR revealed that the B2-VNTR mRNA level was 32% of that of promoter control (P = 0.008), whereas the number of polyadenylated transcripts was 4% (P = 0.02). In contrast, the mRNA half-life of the B2-VNTR was increased (B2-VNTR: 14.9 vs. promoter control: 12.2 h, P = 0.009). Transient transfection of human kidney-derived tsA201 cells with the B2-VNTR construct increased transcription of the native B2 receptor mRNA by 43% (P < 0.05), supporting an endogenous B2 receptor-regulatory capacity of the B2-VNTR. In conclusion, these results identify novel pretranslational effects of the B2-VNTR region to act as a potent negative regulator of heterologous gene expression and support the notion that the bradykinin B2 3'-UTR may impact endogenous receptor regulation.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajprenal.00009.2005DOI Listing

Publication Analysis

Top Keywords

gene expression
12
promoter control
12
b2-vntr region
12
b2-vntr
10
3'-untranslated region
8
type bradykinin
8
bradykinin receptor
8
number tandem
8
tandem repeats
8
repeats b2-vntr
8

Similar Publications

Sequence analysis of the 5' region of the chymotrypsin C (CTRC) gene in chronic pancreatitis.

Pancreatology

January 2025

Center for Gastroenterology, Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary; Hungarian Centre of Excellence for Molecular Medicine - University of Szeged, Translational Pancreatology Research Group, Szeged, Hungary. Electronic address:

Background/objectives: Loss-of-function chymotrypsin C (CTRC) variants increase the risk for chronic pancreatitis (CP) by reducing protective pancreatic CTRC activity. Variants in the 5' upstream region that includes the promoter might affect CTRC expression but have not been investigated to date. The aim of the present study was to address this knowledge gap.

View Article and Find Full Text PDF

Personalized treatment approaches in hepatocellular carcinoma.

Arab J Gastroenterol

January 2025

Endemic Medicine Department, Faculty of Medicine, Helwan University, Cairo, Egypt; Liver Disease Research Center, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia. Electronic address:

Personalized medicine is an emerging field that provides novel approaches to disease's early diagnosis, prevention, treatment, and prognosis based on the patient's criteria in gene expression, environmental factors, lifestyle, and diet. To date, hepatocellular carcinoma (HCC) is a significant global health burden, with an increasing incidence and significant death rates, despite advancements in surveillance, diagnosis, and therapeutic approaches. The majority of HCC lesions develop in patients with liver cirrhosis, carrying the risks of mortality associated with both the tumor burden and the cirrhosis.

View Article and Find Full Text PDF

Reconciliation of wheat 660 K and 90 K SNP arrays and their utilization in dough rheological properties of bread wheat.

J Adv Res

January 2025

Agronomy College / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046 China. Electronic address:

Introduction: High-density Wheat 660 K and 90 K SNP arrays are powerful tools for understanding the genetic basis of wheat traits. However, their inconsistantly physical positions that were caused by different versions of Chinese Spring genome during developing arrays are confused and inconvenient for further application.

Objective: With the repid development of wheat geonome sequencing, we aim to reconciliate Wheat 660 K and 90 K SNP arrays in modern cultivar and reveal the genetic basis of dough rheological properties in bread wheat.

View Article and Find Full Text PDF

Phylogenetic analysis and homology modelling of a new Cry8A crystal protein expressed in a sporulating soil bacterium.

J Struct Biol

January 2025

Postgraduate Program in Industrial Biotechnology, Tiradentes University, Aracaju, Sergipe, Brazil; Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil. Electronic address:

Cry proteins, commonly found in gram-positive soil bacteria, are used worldwide as aerial sprays or in transgenic plants for controlling crop pest populations and as insect vectors. Via PCR analysis, a spore producing soil isolate (BV5) was speculated to encode a Cry gene. Partial nucleotide sequence of the amplified PCR fragment showed homology with the Cry8 genes present in GenBank.

View Article and Find Full Text PDF

Matrix-mediated activation of murine fibroblast-like synoviocytes.

Exp Cell Res

January 2025

Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany. Electronic address:

Fibroblast-like synoviocytes (FLS) are key cells promoting cartilage damage and bone loss in rheumatoid arthritis (RA). They are activated to assume an invasive and migratory phenotype. While mechanisms of FLS activation are unknown, evidence suggests that pre-damaged extracellular matrix (ECM) of the cartilage can trigger FLS activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!