Production of soybean phosphatidylcholine-chitosan nanovesicles by reverse phase evaporation: a step by step study.

Chem Phys Lipids

Instituto de Química, Universidade Federal do Rio Grande do Sul, Caixa Postal 15003, CEP 91501-970 Porto Alegre RS, Brazil.

Published: December 2005

In the present work, we describe the preparation of composite nanovesicles containing soybean phosphatidylcholine and polysaccharide chitosan by the reverse phase evaporation method. Nanovesicles free from chitosan prepared in the same way were studied as reference. The production method involves the preparation of reverse micelles followed by the formation of an organogel, which is dispersed in water to yield the final liposomal structures. Structural changes in each step of the nanovesicles preparation were studied by means of static and dynamic light scattering as well as small angle X-ray scattering. Chitosan was also fully characterized in solution. The hydrodynamic radius of the composite nanovesicles is in the range of 174-286 nm, depending on the chitosan contents. A comparison with nanovesicles free from chitosan indicates the existence of higher contents of multilamellae structures in the composites, as well as improved stability in water.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemphyslip.2005.07.004DOI Listing

Publication Analysis

Top Keywords

reverse phase
8
phase evaporation
8
composite nanovesicles
8
nanovesicles free
8
free chitosan
8
nanovesicles
6
chitosan
5
production soybean
4
soybean phosphatidylcholine-chitosan
4
phosphatidylcholine-chitosan nanovesicles
4

Similar Publications

This study investigates the relationship between SARS-CoV-2 RT-PCR cycle threshold (Ct) values and key COVID-19 transmission and outcome metrics across five years of the pandemic in Jalisco, Mexico. Utilizing a comprehensive time-series analysis, we evaluated weekly median Ct values as proxies for viral load and their temporal associations with positivity rates, reproduction numbers (Rt), hospitalizations, and mortality. Cross-correlation and lagged regression analyses revealed significant lead-lag relationships, with declining Ct values consistently preceding surges in positivity rates and hospitalizations, particularly during the early phases of the pandemic.

View Article and Find Full Text PDF

Synthesis of P(AM/AA/SSS/DMAAC-16) and Studying Its Performance as a Fracturing Thickener in Oilfields.

Polymers (Basel)

January 2025

Engineering Research Center of Oil and Gas Field Chemistry, Universities of Shaanxi Provence, Xi'an Shiyou University, Xi'an 710065, China.

In order to solve the problems of long dissolution and preparation time, cumbersome preparation, and easy moisture absorption and deterioration during storage or transportation, acrylamide (AM), acrylic acid (AA), sodium p-styrene sulfonate (SSS), and cetyl dimethylallyl ammonium chloride (DMAAC-16) were selected as raw materials, and the emulsion thickener P(AM/AA/SSS), which can be instantly dissolved in water and rapidly thickened, was prepared by the reversed-phase emulsion polymerization method. DMAAC-16, the influence of emulsifier dosage, oil-water ratio, monomer molar ratio, monomer dosage, aqueous pH, initiator dosage, reaction temperature, reaction time, and other factors on the experiment was explored by a single-factor experiment, and the optimal process was determined as follows: the oil-water volume ratio was 0.4, the emulsifier dosage was 7% of the oil phase mass, the initiator dosage was 0.

View Article and Find Full Text PDF

Silicon carbide (SiC) metal oxide semiconductor field-effect transistors (MOSFETs) are a future trend in traction inverters in electric vehicles (EVs), and their thermal safety is crucial. Temperature-sensitive electrical parameters' (TSEPs) indirect detection normally requires additional circuits, which can interfere with the system and increase costs, thereby limiting applications. Therefore, there is still a lack of cost-effective and sensorless thermal monitoring techniques.

View Article and Find Full Text PDF

A new compound [Y(sq)(HO)] (Y-sq; sq = squarate (CO)) was prepared and structurally characterized. Since the RE-sq family (RE = Y, Dy, Yb, Lu) gave isostructural crystals, the objective of this study is to explore the effects of diamagnetic dilution on the SIM behavior through systematic investigation and comparison of diamagnetically diluted and undiluted forms. The 1%-Diluted Dy compounds, Dy@Y-sq and Dy@Lu-sq, showed AC magnetic susceptibility peaks without any DC bias field (), whereas undiluted Dy-sq showed no AC out-of-phase response under the same conditions.

View Article and Find Full Text PDF

Microstructure and Mechanical Properties of Mg-8Li-3Al-0.3Si Alloy Deformed Through a Combination of Back-Extrusion and Spinning Process.

Materials (Basel)

January 2025

Shanxi Key Laboratory of Magnesium-Based Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.

In this work, the Mg-8Li-3Al-0.3Si (LAS830) alloy was prepared by the vacuum melting method. The as-cast alloy was subjected to backward extrusion at 250 °C and then spun at 250 °C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!