Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We report an investigation of the water-hydrophobic interface in well-defined nanochannels (R approximately 2-4 nm). Wetting in these systems cannot be described by classical (macroscopic) capillary theory: (1) water occupies only a fraction ( approximately 60%) of the pore volume, and (2) the capillary pressures are approximately 60-90% greater than predicted by the Laplace equation. The results suggest the presence of approximately 0.6 nm layer of low-density fluid (vapor) separating water from the hydrophobic solid.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja053267c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!