The adenosine A1 receptor (A1R) inhibits beta-adrenergic-induced contractile effects (antiadrenergic action), and the adenosine A2A receptor (A2AR) both opposes the A1R action and enhances contractility in the heart. This study investigated the A1R and A2AR function in beta-adrenergic-stimulated, isolated wild-type and A2AR knockout murine hearts. Constant flow and pressure perfused preparations were employed, and the maximal rate of left ventricular pressure (LVP) development (+dp/dt(max)) was used as an index of cardiac function. A1R activation with 2-chloro-N6-cyclopentyladenosine (CCPA) resulted in a 27% reduction in contractile response to the beta-adrenergic agonist isoproterenol (ISO). Stimulation of A2AR with 2-P(2-carboxyethyl)phenethyl-amino-5'-N-ethylcarboxyamidoadenosine (CGS-21680) attenuated this antiadrenergic effect, resulting in a partial (constant flow preparation) or complete (constant pressure preparation) restoration of the ISO contractile response. These effects of A2AR were absent in knockout hearts. Up to 63% of the A2AR influence was estimated to be mediated through its inhibition of the A1R antiadrenergic effect, with the remainder being the direct contractile effect. Further experiments examined the effects of A2AR activation and associated vasodilation with low-flow ischemia in the absence of beta-adrenergic stimulation. A2AR activation reduced by 5% the depression of contractile function caused by the flow reduction and also increased contractile performance over a wide range of perfusion flows. This effect was prevented by the A2AR antagonist 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM-241385). It is concluded that in the murine heart, A1R and A2AR modulate the response to beta-adrenergic stimulation with A2AR, attenuating the effects of A1R and also increasing contractility directly. In addition, A2AR supports myocardial contractility in a setting of low-flow ischemia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpheart.00740.2005 | DOI Listing |
Alzheimers Dement
December 2024
The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
Background: Alzheimer's Disease (AD) manifests early in the olfactory system, yet its precise role in the pathophysiology of AD remains elusive. This study aims to elucidate the progression of olfactory dysfunction in AD by investigating the dysregulation of the adenosine 2A receptor (A2AR) and its potential involvement in the formation of abnormal plaques and tangles. A2AR plays a pivotal role in modulating synaptic transmission and neuroinflammation by regulating both neurons and glial cells.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
Introduction: The paraventricular thalamic nucleus (PVT) is recognized for its critical role in pain regulation, yet the precise molecular mechanisms involved remain poorly understood. Here, we demonstrated an essential role of the microglial adenosine A receptor (AR) in the PVT in regulating pain sensation and non-opioid analgesia.
Method And Results: Specifically, AR was predominantly expressed in ionized calcium binding adapter molecule 1 (Iba1)-positive microglia cells within the PVT, with expression levels remaining unchanged in mice experiencing persistent inflammatory pain induced by complete Freund's adjuvant (CFA).
Biomed Rep
February 2025
Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 641418, P.R. China.
Obstructive sleep apnea (OSA) is the most common type of sleep apnea, which leads to episodes of intermittent hypoxia due to obstruction of the upper airway. A key feature of OSA is the upregulation and stabilization of hypoxia-inducible factor 1 (HIF-1), a crucial metabolic regulator that facilitates rapid adaptation to changes in oxygen availability. Adenosine A2A receptor (A2AR), a major adenosine receptor, regulates HIF-1 under hypoxic conditions, exerting anti-inflammatory properties and affecting lipid metabolism.
View Article and Find Full Text PDFSignal transduction downstream of activating stimuli controls CD8+ T cell biology, however these external inputs can become uncoupled from transcriptional regulation in Primary Immune Regulatory Disorders (PIRDs). Gain-of-function (GOF) variants in STAT3 amplify cytokine signaling and cause a severe PIRD characterized by early onset autoimmunity, lymphoproliferation, recurrent infections, and immune dysregulation. In both primary human and mouse models of STAT3 GOF, CD8+ T cells have been implicated as pathogenic drivers of autoimmunity.
View Article and Find Full Text PDFBiophys J
December 2024
Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania. Electronic address:
G-protein-coupled receptors (GPCRs) represent one of the largest classes of therapeutic targets. However, developing successful therapeutics to target GPCRs is a challenging endeavor, with many molecules failing during in vivo clinical trials due to a lack of efficacy. The in vitro identification of drug-target residence time (1/k) has been suggested to improve predictions of in vivo success.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!