Cytogenetic maps of sorghum chromosomes 3-7, 9, and 10 were constructed on the basis of the fluorescence in situ hybridization (FISH) of approximately 18-30 BAC probes mapped across each of these chromosomes. Distal regions of euchromatin and pericentromeric regions of heterochromatin were delimited for all 10 sorghum chromosomes and their DNA content quantified. Euchromatic DNA spans approximately 50% of the sorghum genome, ranging from approximately 60% of chromosome 1 (SBI-01) to approximately 33% of chromosome 7 (SBI-07). This portion of the sorghum genome is predicted to encode approximately 70% of the sorghum genes ( approximately 1 gene model/12.3 kbp), assuming that rice and sorghum encode a similar number of genes. Heterochromatin spans approximately 411 Mbp of the sorghum genome, a region characterized by a approximately 34-fold lower rate of recombination and approximately 3-fold lower gene density compared to euchromatic DNA. The sorghum and rice genomes exhibit a high degree of macrocolinearity; however, the sorghum genome is approximately 2-fold larger than the rice genome. The distal euchromatic regions of sorghum chromosomes 3-7 and 10 are approximately 1.8-fold larger overall and exhibit an approximately 1.5-fold lower average rate of recombination than the colinear regions of the homeologous rice chromosomes. By contrast, the pericentromeric heterochromatic regions of these chromosomes are on average approximately 3.6-fold larger in sorghum and recombination is suppressed approximately 15-fold compared to the colinear regions of rice chromosomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1456119 | PMC |
http://dx.doi.org/10.1534/genetics.105.048215 | DOI Listing |
bioRxiv
December 2024
Department of Biology, Pennsylvania State University, University Park, PA 16802.
Aerosol-producing global catastrophes such as nuclear war, super-volcano eruption, or asteroid strike, although rare, pose a serious threat to human survival. Light-absorbing aerosols would sharply reduce temperature and solar radiation reaching the earth's surface, decreasing crop productivity including for locally adapted traditional crop varieties, i.e.
View Article and Find Full Text PDFPlant Mol Biol
December 2024
Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA.
Heat stress affects various components of photosynthetic machinery of which Rubisco activation inhibition due to heat sensitive Rubisco activase (RCA) is the most prominent. Detailed comparison of RCA coding genes identified a tandem duplication event in the grass family lineage where the duplicated genes showed very different evolutionary pattern. One of the two genes showed high level of sequence conservation whereas the second copy, although present only 1.
View Article and Find Full Text PDFBMC Genomics
December 2024
Institute of Biology (IB), State University of Campinas (UNICAMP), Campinas, SP, Brazil.
Background: Elucidating the intricacies of the sugarcane genome is essential for breeding superior cultivars. This economically important crop originates from hybridizations of highly polyploid Saccharum species. However, the large size (10 Gb), high degree of polyploidy, and aneuploidy of the sugarcane genome pose significant challenges to complete genome sequencing, assembly, and annotation.
View Article and Find Full Text PDFNew Phytol
December 2024
Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
Global demand for food may rise by 60% mid-century. A central challenge is to meet this need using less land in a changing climate. Nearly all crop carbon is assimilated through Rubisco, which is catalytically slow, reactive with oxygen, and a major component of leaf nitrogen.
View Article and Find Full Text PDFPlant J
December 2024
DOE Center for Advanced Bioenergy and Bioproducts Innovation, St. Paul, Minnesota, 55108, USA.
The requirement of in vitro tissue culture for the delivery of gene editing reagents limits the application of gene editing to commercially relevant varieties of many crop species. To overcome this bottleneck, plant RNA viruses have been deployed as versatile tools for in planta delivery of recombinant RNA. Viral delivery of single-guide RNAs (sgRNAs) to transgenic plants that stably express CRISPR-associated (Cas) endonuclease has been successfully used for targeted mutagenesis in several dicotyledonous and few monocotyledonous plants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!