We tested the hypothesis that plants grown under high light intensity (HL-plants) had a large activity of cyclic electron flow around PSI (CEF-PSI) compared with plants grown under low light (LL-plants). To evaluate the activity of CEF-PSI, the relationships between photosynthesis rate, quantum yields of both PSII and PSI, and Chl fluorescence parameters were analyzed simultaneously in intact leaves of tobacco plants which had been grown under different light intensities (150 and 1,100 micromol photons m(-2) s(-1), respectively) and with different amounts of nutrients supplied. HL-plants showed a larger value of non-photochemical quenching (NPQ) of Chl fluorescence at the limited activity of photosynthetic linear electron flow. Furthermore, HL-plants had a larger activity of CEF-PSI than LL-plants. These results suggested that HL-plants dissipated the excess photon energy through NPQ by enhancing the ability of CEF-PSI to induce acidification of the thylakoid lumen.

Download full-text PDF

Source
http://dx.doi.org/10.1093/pcp/pci197DOI Listing

Publication Analysis

Top Keywords

electron flow
12
chl fluorescence
12
plants grown
12
light intensity
8
cyclic electron
8
flow psi
8
non-photochemical quenching
8
activity cef-psi
8
hl-plants larger
8
effects light
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!