Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
It has previously been demonstrated that freehand 3D ultrasound can be acquired without a position sensor by measuring the elevational speckle decorrelation from frame to frame. However, this requires that the B-scans contain significant amounts of fully developed speckle. In this paper, we show that this condition is rarely satisfied in scans of real tissue, which instead exhibit fairly ubiquitous coherent scattering. By examining the axial and lateral correlation functions, we propose an heuristic technique to quantify the amount of coherency at each point in the B-scans. This leads to an adapted elevational decorrelation scheme which allows for the coherent scattering. Using the adapted scheme, we demonstrate markedly improved reconstructions of animal tissue in vitro.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.media.2005.08.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!