A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Body sway during quiet standing: is it the residual chattering of an intermittent stabilization process? | LitMetric

Body sway during quiet standing: is it the residual chattering of an intermittent stabilization process?

Hum Mov Sci

Neurolab, Department of Informatics, Systems and Telecommunications, University of Genova, Via Opera Pia 13, 16145 Genova, Italy.

Published: August 2005

This paper reviews different approaches for explaining body sway while quiet standing that directly address the instability of the human inverted pendulum. We argue that both stiffness control [Winter, D. A., Patla, A. E., Riedtyk, S., & Ishac, M. (2001). Ankle muscle stiffness in the control of balance during quiet standing. Journal of Neurophysiology, 85, 2630-2633] and continuous feedback control by means of a PID (Proportional, Integral, Derivative) mechanism [Peterka, R. J. (2000). Postural control model interpretation of stabilogram diffusion analysis. Biological Cybernetics, 83, 335-343.] can guarantee asymptotic stability of controlled posture at the expense of unrealistic assumptions: the level of intrinsic muscle stiffness in the former case, and the level of background noise in the latter, which also determines an unrealistic level of jerkiness in the sway. We show that the decomposition of the control action into a slow and a fast component (rambling and trembling, respectively, as proposed by [Zatsiorsky, V. M., & Duarte, M. (1999). Instant equilibrium point and its migration in standing tasks: Rambling and trembling components of the stabilogram. Motor Control, 4, 185-200; Zatsiorsky, V. M., & Duarte, M. (2000). Rambling and trembling in quiet standing. Motor Control, 4, 185-200.]) is useful but must be modified in order to take into account that rambling is not a stable equilibrium trajectory. We address the possibility of a form of stability weaker than asymptotic stability in light of the intermittent stabilization mechanism outlined by [Loram, I. D., & Lakie, M. (2002a). Human balancing of an inverted pendulum: position control by small, ballistic-like, throw and catch movements. Journal of Physiology, 540, 1111-1124.], and propose an indicator of intermittent stabilization that is related to the phase portrait of the human inverted pendulum. This indicator provides a further argument against the plausibility of PID-like control mechanisms. Finally, we draw attention to the sliding mode control theory that provides a useful theoretical framework for formulating realistic intermittent, stabilization models.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.humov.2005.07.006DOI Listing

Publication Analysis

Top Keywords

quiet standing
16
intermittent stabilization
16
inverted pendulum
12
rambling trembling
12
control
10
body sway
8
sway quiet
8
human inverted
8
stiffness control
8
muscle stiffness
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!