Background & Aims: In previous studies in rodent models of food allergy, we identified that sensitization induces expression of CD23 on intestinal epithelial cells and results in enhanced IgE-dependent transepithelial antigen uptake; further studies in CD23-/- mice provided evidence that CD23 is involved in protected transport of antigen into the body. Little information exists in humans on receptor-mediated immunoglobulin (Ig)E transport across epithelia. The present study was designed to examine expression of CD23 by human epithelial cells, determine its isoform and regulation by interleukin (IL) 4, and identify the role of CD23 in transepithelial IgE transport.

Methods: Epithelial expression of CD23 was studied in cell lines, ileal biopsy specimens, and explanted fetal intestine. Bidirectional transport of IgE was measured across filter-grown cells, either normal cells or those transfected with antisense CD23 oligonucleotides, or in the presence of blocking antibody.

Results: Expression of the low-affinity IgE receptor was demonstrated in cultured epithelial cells as well as in situ cells in human intestine. CD23b was the isoform expressed by HT29, T84, and Caco-2 cells. IL-4 up-regulated the expression of epithelial CD23. IgE was transported in both the basal-to-apical direction and the apical-to-basal direction across filter-grown epithelial cells, a process that was inhibited by transfection of cells with CD23 antisense oligonucleotides or pretreatment with nonspecific IgE or anti-CD23 antibody.

Conclusions: These findings provide evidence that CD23 encodes a functional IgE receptor on human intestinal epithelial cells and that this epithelial receptor is likely to play an important role in food allergies.

Download full-text PDF

Source
http://dx.doi.org/10.1053/j.gastro.2005.06.014DOI Listing

Publication Analysis

Top Keywords

epithelial cells
20
expression cd23
12
cells
10
cd23
9
ige transport
8
human intestinal
8
epithelial
8
intestinal epithelial
8
evidence cd23
8
ige receptor
8

Similar Publications

Lysosomal dysfunction and inflammatory sterol metabolism in pulmonary arterial hypertension.

Science

January 2025

Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.

Vascular inflammation regulates endothelial pathophenotypes, particularly in pulmonary arterial hypertension (PAH). Dysregulated lysosomal activity and cholesterol metabolism activate pathogenic inflammation, but their relevance to PAH is unclear. Nuclear receptor coactivator 7 () deficiency in endothelium produced an oxysterol and bile acid signature through lysosomal dysregulation, promoting endothelial pathophenotypes.

View Article and Find Full Text PDF

Background: Intestinal larva invasion is a crucial step of Trichinella spiralis infection. Intestinal infective larvae (IIL) and their excretory/secretory proteins (ESP) interact with gut epithelium, which often results in gut epithelium barrier injuries. Previous studies showed when T.

View Article and Find Full Text PDF

The applications of artificial intelligence (AI) and deep learning (DL) are leading to significant advances in cancer research, particularly in analysing histopathology images for prognostic and treatment-predictive insights. However, effective translation of these computational methods requires computational researchers to have at least a basic understanding of histopathology. In this work, we aim to bridge that gap by introducing essential histopathology concepts to support AI developers in their research.

View Article and Find Full Text PDF

Background: Dynamins are defined as a group of molecules with GTPase activity that play a role in the formation of endocytic vesicles and Golgi apparatus. Among them, DNM3 has gained recognition in oncology for its tumor suppressor role. Based on this, the aim of this study is to investigate the effects of the DNM3 gene in patients diagnosed with pancreatic cancer using bioinformatics databases.

View Article and Find Full Text PDF

Urinary obstruction causes injury to the renal medulla, impairing the ability to concentrate urine, and increasing the risk of progressive kidney disease. However, the regenerative capacity of the renal medulla after reversal of obstruction is poorly understood. To investigate this, we developed a mouse model of reversible urinary obstruction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!