Background: In vivo electrotransfer is a physical method of gene delivery in various tissues and organs. It is a promising strategy for the systemic secretion of therapeutic proteins and for DNA vaccination. Nevertheless, for the success of gene therapy in clinics, it is essential to develop gene regulation systems. The existing systems described in the literature all rely on the creation of an artificial transcription factor and/or an inducer drug. New strategies based on endogenous regulatable elements are being developed. We have previously identified the murine metallothionein promoter as an endogenous promoter inducible by controlled electric stimuli applied for electrotransfer experiments. We report here a regulation strategy based on this murine metallothionein promoter in a plasmid context using electric pulses delivery as an inducer.

Methods: Plasmids containing different constructions of the murine metallothionein I (mMT-I) promoter were transfected in mice tibialis-cranalis muscles using the simple skeletal muscle electrotransfer method. The regulation system was studied with the murine secreted alkaline phosphatase (MUSEAP) reporter gene.

Results: The mMT-I promoter can be transiently induced in vivo by application of electric fields. Its inducibility was analyzed in a plasmid context. We demonstrated that the mechanism of this transcriptional induction is not mediated by the cellular entry of metal ions. The ARE (antioxidant-responsive element) sequence was identified as the element responsive to the electric field stimulation.

Conclusions: This time-control of the expression of a therapeutic gene by physical stimuli could be of value in the context of gene regulation for gene therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jgm.811DOI Listing

Publication Analysis

Top Keywords

gene regulation
12
murine metallothionein
12
gene
8
electric pulses
8
pulses delivery
8
gene therapy
8
metallothionein promoter
8
plasmid context
8
mmt-i promoter
8
promoter
6

Similar Publications

Androgens are pleiotropic and play pivotal roles in the formation and variation of sexual phenotypes. We show that differences in circulating androgens between the three male mating morphs in ruff sandpipers are linked to 17-beta hydroxysteroid dehydrogenase 2 (HSD17B2), encoded by a gene within the supergene that determines the morphs. Low-testosterone males had higher expression in blood than high-testosterone males, as well as in brain areas related to social behaviors and testosterone production.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) are among the most abundant types of non-coding RNAs in the genome and exhibit particularly high expression levels in the brain, where they play crucial roles in various neurophysiological and neuropathological processes. Although ischemic stroke is a complex multifactorial disease, the involvement of brain-derived lncRNAs in its intricate regulatory networks remains inadequately understood. In this study, we established a cerebral ischemia-reperfusion injury model using middle cerebral artery occlusion (MCAO) in male Sprague-Dawley rats.

View Article and Find Full Text PDF

Genome-Wide Analysis of the CsAP2/ERF Gene Family of Sweet Orange (Citrus sinensis) and Joint Analysis of Transcriptional Metabolism under Salt Stress.

Ann Bot

January 2025

Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.

Background: Sweet orange is an important economic crop, and salt stress can inhibit its growth and development.

Methods: In this study, we identified AP2/ERF genes in sweet orange via bioinformatics and performed a combined transcription‒metabolism analysis, which revealed for the first time the integrated molecular mechanism of salt stress regulation in sweet orange.

Key Results: A total of 131 sweet orange AP2/ERF genes were identified and categorized into five groups.

View Article and Find Full Text PDF

Bioinformatic identification of important roles of COL1A1 and TNFRSF12A in cartilage injury and osteoporosis.

J Int Soc Sports Nutr

December 2025

Jiujiang No.1 People's Hospital, Department of Orthopedics, Jiujiang City Key Laboratory of Cell Therapy, Jiujiang, China.

Objective: The aim of this study was to identify the key regulatory mechanisms of cartilage injury and osteoporosis through bioinformatics methods, and to provide a new theoretical basis and molecular targets for the diagnosis and treatment of the disease.

Methods: Microarray data for cartilage injury (GSE129147) and osteoporosis (GSE230665) were first downloaded from the GEO database. Differential expression analysis was applied to identify genes that were significantly up-or down-regulated in the cartilage injury and osteoporosis samples.

View Article and Find Full Text PDF

Objective: This study aims to explore the role of exosome-related genes in breast cancer (BRCA) metastasis by integrating RNA-seq and single-cell RNA-seq (scRNA-seq) data from BRCA samples and to develop a reliable prognostic model.

Methods: Initially, a comprehensive analysis was conducted on exosome-related genes from the BRCA cohort in The Cancer Genome Atlas (TCGA) database. Three prognostic genes (JUP, CAPZA1 and ARVCF) were identified through univariate Cox regression and Lasso-Cox regression analyses, and a metastasis-related risk score model was established based on these genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!