Neolignans from Saururus chinensis inhibit PC-3 prostate cancer cell growth via apoptosis and senescence-like mechanisms.

Int J Mol Med

Department of Medicine, College of Medicine, Kangwon National University, 17-1 Hyo-ja dong, Chuncheon, Kangwon-do 200-722, Korea.

Published: October 2005

AI Article Synopsis

Article Abstract

This study investigated the anticancer activity and related mechanisms of neolignans, especially threo, erythro-manassantin A (compound 2), which are isolated from Saururus chinensis, in PC-3 cells. Compound 2 strongly inhibited the proliferation of PC-3 cells in a dose-dependent manner. Different cell morphologies were observed depending on the concentration of compound 2, which suggested different growth inhibitory mechanisms. DNA flow cytometry indicated that both low and high concentrations of compound 2 induced the arrest of PC-3 cells in G1 phase. Western blot analyses showed that hyperphosphorylated Rb and E2F-1 were decreased, whereas hypophosphorylated Rb was increased. The cells treated with compound 2 at 200 ng/ml showed shrinkage morphologically, and the staining of annexin V-FITC revealed apoptotic cell death of these cells. The induction of apoptosis was accompanied by the cleavage of caspase-3, -8, and -9, as well as the downregulation of the Bcl-2 and the upregulation of Bax. By contrast, at low compound 2 concentration (1 ng/ml), the cells arrested in G1 showed characteristic changes in morphology, such as an enlarged, flattened cell shape; the majority strongly expressed SA-beta-galactosidase activity. The number of cells undergoing apoptosis was negligible, and no poly(ADP-ribose) polymerase (PARP) cleavage was observed. The increase of p21 was noticed. However, it appeared to be transient rather than sustained. The protein p27 may be important for maintaining the senescence machinery induced by compound 2 because p27 expression was increased at low concentration compared with that at high concentration. In conclusion, compound 2 showed a significant growth inhibitory effect in PC-3 cells via two different mechanisms, i.e., apoptosis at high concentration and senescence at low concentration.

Download full-text PDF

Source

Publication Analysis

Top Keywords

pc-3 cells
16
saururus chinensis
8
compound
8
cells
8
growth inhibitory
8
low concentration
8
high concentration
8
concentration
6
pc-3
5
neolignans saururus
4

Similar Publications

Infectious diseases, including bacterial, fungal, and viral, have once again gained urgency in the drug development pipeline after the recent COVID-19 pandemic. Tuberculosis (TB) is an old infectious disease for which eradication has not yet been successful. Novel agents are required to have potential activity against both drug-sensitive and drug-resistant strains of Mycobacterium tuberculosis (Mtb), the causative agent of TB.

View Article and Find Full Text PDF

Design, synthesis, and in vitro antitumor evaluation of novel benzimidazole acylhydrazone derivatives.

Mol Divers

January 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.

This study focuses on the design, synthesis, and evaluation of benzimidazole derivatives for their anti-tumor activity against A549 and PC-3 cells. Initial screening using the MTT assay identified compound 5m as the most potent inhibitor of A549 cells with an IC of 7.19 μM, which was superior to the positive agents 5-Fluorouracil and Gefitinib.

View Article and Find Full Text PDF

Background: Gastrin releasing peptide receptor (GRPR)-directed radiopharmaceuticals for targeted radionuclide therapy may be a very promising addition in prostate and breast cancer patient management. Aiming to provide a GRPR-targeting theranostic pair, we have utilized the Tc-99m/Re-188 radiometal pair, in combination with two bombesin based antagonists, maSSS-PEG2-RM26 and maSES-PEG2-RM26. The two main aims of the current study were (i) to elucidate the influence of the radiometal-exchange on the biodistribution profile of the two peptides and (ii) to evaluate the feasibility of using the [Tc]Tc labeled counterparts for the dosimetry estimation for the [Re]Re-labeled conjugates.

View Article and Find Full Text PDF

Chronic NaAsO exposure promotes migration and invasion of prostate cancer cells by Akt/GSK-3β/β-catenin/TCF4 axis-mediated epithelial-mesenchymal transition.

Ecotoxicol Environ Saf

January 2025

Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Department of Urology, Chaohu Hospital of Anhui Medical University, Chaohu 238000, China. Electronic address:

Inorganic arsenic is a Class I human Carcinogen. However, the role of chronic inorganic arsenic exposure on prostate cancer metastasis still unclear. This study aimed to investigate the effects and mechanism of chronic NaAsO exposure on migration and invasion of prostate cancer cells.

View Article and Find Full Text PDF

Prostate cancer represents the predominant malignant neoplasm observed in the male population and ranks second in terms of mortality attributable to malignant neoplasm among men. Decursinol angelate (DA), derived from the plant Nakai (AGN), has demonstrated anti-cancer effectiveness through the induction of intrinsic and extrinsic apoptosis pathways, inhibition of cancer cell proliferation, having anti- neovascularization, anti-inflammatory anti-oxidative activities and stimulating the immune process. The aim of this study was to determine the IC50 dose of DA on human prostate cancer cell line PC-3, as well as to assess its effects on cell viability and apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!