As an attempt to search for bioactive natural products exerting antiinflammatory activity, we have isolated two saponins were isolated from the aerial portion of Pleurospermum kamtschaticum (Umbelliferae) by nitrite assay activity-directed chromatographic fractionation. They were identified as saikogenin F 3-O-{beta-D-glucopyranosyl-(1-->2)-[beta-D-glucopyranosyl-(1-->3)]-beta-D-fucopyranoside} (buddlejasaponin IV, 1) and 3beta,16beta,23,28-tetrahydroxy-11alpha-methoxyolean-12-ene 3-O-{beta-D-glucopyranosyl(1-->2)-[beta-D-glucopyranosyl(1-->3)]-beta-D-fucopyranoside} (buddlejasaponin IVa, 2). Compound 1 significantly inhibited nitric oxide (NO) production, and it also significantly decreased prostaglandin E2 (PGE2) and tumor necrosis factor-alpha (TNF-alpha) release in the lipopolysaccharide (LPS)-activated macrophage Raw 264.7 cells whereas compound 2 was much less active. Saikogenin A (3) and -H (4) were obtained by hydrolyzing 1 and 2. Although these sapogenin showed strong NO inhibition, these effects were caused by the cytotoxic effect on Raw 264.7 cells. These results supported the notion that buddlejasaponin IV is a major inhibitors of NO, PGE2 and TNF-alpha production in P. kamtschaticum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1248/bpb.28.1668 | DOI Listing |
Front Pharmacol
January 2025
Department of Cardiovascular Center, First Affiliated Hospital of Huzhou University, Huzhou, China.
The emergence of targeted anti-tumor drugs has significantly prolonged the lifespan and improved the prognosis of cancer patients. Among these drugs, vascular endothelial growth factor (VEGF) inhibitors, particularly novel small molecule tyrosine kinase inhibitors (TKIs), are extensively employed as VEGF inhibitors; however, they are also associated with a higher incidence of complications, with hypertension being the most prevalent cardiovascular toxic side effect. Currently, it is widely accepted that TKIs-induced hypertension involves multiple mechanisms including dysregulation of the endothelin (ET) axis, reduced bioavailability of nitric oxide (NO), imbalance in NO-ROS equilibrium system, vascular rarefaction, and activation of epithelial sodium calcium channels; nevertheless, excessive activation of ET system appears to be predominantly responsible for this condition.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Geriatric Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.
Endothelial cell dysfunction plays a crucial role in the early development of cerebral small vessel disease (CSVD). Arginase-1 (ARG1) is expressed in endothelial cells, and its deficiency may exacerbate cerebrovascular damage by increasing reactive oxygen species (ROS) production, thereby inducing endothelial cell apoptosis. Berbamine (BBM) has shown potential in neuroprotection and cardiovascular disease prevention.
View Article and Find Full Text PDFFront Physiol
January 2025
School of Kinesiology, Auburn University, Auburn, AL, United States.
Nitric oxide (NO) is a ubiquitous signaling molecule known to modulate various physiological processes, with specific implications in skeletal muscle and broader applications in exercise performance. This review focuses on the modulation of skeletal muscle function, mitochondrial adaptation and function, redox state by NO, and the effect of nitrate supplementation on exercise performance. In skeletal muscle function, NO is believed to increase the maximal shortening velocity and peak power output of muscle fibers.
View Article and Find Full Text PDFJ Microbiol Biotechnol
December 2024
Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Republic of Korea.
Inflammatory is a crucial part of the immune system of body protect it from harmful invaders, such as bacteria, viruses, and other foreign substances. In this study, the effects of chloroform extract of fermented (CEFV) on lipopolysaccharide (LPS)-induced inflammatory response in RAW264.7 macrophages were investigated.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China.
Oxidative stress and inflammatory dysregulation play crucial roles in pathogenesis of acute lung injury (ALI), and their cyclic synergy drives excessive inflammatory responses and further exacerbates ALI. Therefore, new effective strategies to treat ALI are urgently needed. Herein, a novel synergistic selenium based chlorogenic acid nanoparticle was developed to disrupt the cyclic synergistic effect between oxidative stress and inflammatory response in ALI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!