Specific recognition of phosphatidylinositol 3-phosphate [PtdIns3P] by the FYVE domain targets cytosolic proteins to endosomal membranes during key signaling and trafficking events within eukaryotic cells. Here, we show that this membrane targeting is regulated by the acidic cellular environment. Lowering the cytosolic pH enhances PtdIns3P affinity of the FYVE domain, reinforcing the anchoring of early endosome antigen 1 (EEA1) to endosomal membranes. Reversibly, increasing the pH disrupts phosphoinositide binding and leads to cytoplasmic redistribution of EEA1. pH dependency is due to a pair of conserved His residues, the successive protonation of which is required for PtdIns3P head group recognition as revealed by NMR. Substitution of the His residues abolishes PtdIns3P binding by the FYVE domain in vitro and in vivo. Another PtdIns3P-binding module, the PX domain of Vam7 and p40phox is shown to be pH-independent. This provides the fundamental functional distinction between the two phosphoinositide-recognizing domains. The presented mode of FYVE regulation establishes the unique function of FYVE proteins as low pH sensors of PtdIns3P and reveals the critical role of the histidine switch in targeting of these proteins to endosomal membranes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1201587 | PMC |
http://dx.doi.org/10.1073/pnas.0503900102 | DOI Listing |
Plant Cell
January 2025
State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China.
Salt stress causes ion toxicity in plant cells and limits plant growth and crop productivity. Sodium ions (Na+) are transported out of the cell and sequestered in the vacuole for detoxification under salt stress. The salt excretion system is controlled by the SALT OVERLY SENSITIVE (SOS) pathway, which consists of the calcium sensors SOS3 and SOS3-LIKE CALCIUM BINDING PROTEIN 8, the protein kinase SOS2, and the plasma membrane Na+/H+ antiporter SOS1.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2025
Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China. Electronic address:
Phosphoinositide kinase, FYVE-type zinc finger containing (PIKFYVE) was recently identified as a causative gene for cataract. Pikfyve phosphatidylinositol phosphate kinase domain-deficient (pikfyve) zebrafish lens and PIKFYVE-inhibited human lens epithelial cells developed vacuoles, colocalized with late endosome marker RAB7. In this study, the pikfyvezebrafish with vacuole-like cataract underwent transcriptomic and proteomic analyses to explore the underlying mechanisms of vacuole formation.
View Article and Find Full Text PDFMol Oncol
January 2025
Sarcoma Research Group, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Oncobell, L'Hospitalet de Llobregat, Barcelona, Spain.
Ewing sarcoma (EWS) is the second most common bone tumor affecting children and young adults, with dismal outcomes for patients with metastasis at diagnosis. Mechanisms leading to metastasis remain poorly understood. To deepen our knowledge on EWS progression, we have profiled tumors and metastases from a spontaneous metastasis mouse model using a multi-omics approach.
View Article and Find Full Text PDFAutophagy
January 2025
Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany.
Lysosomes are the major cellular organelles responsible for nutrient recycling and degradation of cellular material. Maintenance of lysosomal integrity is essential for cellular homeostasis and lysosomal membrane permeabilization (LMP) sensitizes toward cell death. Damaged lysosomes are repaired or degraded via lysophagy, during which glycans, exposed on ruptured lysosomal membranes, are recognized by galectins leading to K48- and K63-linked poly-ubiquitination (poly-Ub) of lysosomal proteins followed by recruitment of the macroautophagic/autophagic machinery and degradation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!