AI Article Synopsis

Article Abstract

Phosphoglucose isomerase (PGI) is a glycolytic enzyme that moonlights as a cytokine under the aliases autocrine motility factor (AMF), neuroleukin and maturation factor. The cytokine function of PGI/AMF targets multiple cell types however mechanisms that regulate and sequester this ubiquitous, circulating cytokine remain largely unidentified. PGI/AMF is shown here to exhibit fibronectin (FN)-dependent cell surface association at both neutral and acid pH. Direct PGI/AMF binding to FN and fluorescence resonance energy transfer (FRET) between PGI/AMF and FN were detected only at pH 5. At neutral pH, the interaction of PGI/AMF with FN is receptor-mediated requiring prior clathrin-dependent endocytosis. PGI/AMF and FN do not co-internalize and PGI/AMF undergoes a second round of endocytosis upon recycling to the plasma membrane indicating that recycling PGI/AMF receptor complexes associate with FN fibrils. Heparan sulphate does not affect cell association of PGI/AMF at neutral pH but enhances the FN-independent cell surface association of PGI/AMF at acid pH identifying two distinct mechanisms for PGI/AMF sequestration under acidic conditions. However, only PGI/AMF sequestration by FN at acid pH was able to stimulate cell motility upon pH neutralization identifying FN as a pH-dependent cytokine trap for PGI/AMF. The multiple ways of cellular association of PGI/AMF may represent acquired mechanisms to regulate and harness the cytokine function of PGI/AMF.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.02538DOI Listing

Publication Analysis

Top Keywords

pgi/amf
15
association pgi/amf
12
motility factor
8
heparan sulphate
8
cytokine function
8
function pgi/amf
8
mechanisms regulate
8
cell surface
8
surface association
8
pgi/amf sequestration
8

Similar Publications

Structure, Function and Inhibition of Poly(ADP-ribose)polymerase, Member 14 (PARP14).

Mini Rev Med Chem

December 2018

Medicinal Chemistry Group, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Australia.

Poly(ADP-ribose)polymerase, member 14 (PARP14, alternatively named ARTD8, BAL2, and COAST6) is an intracellular mono(ADP-ribosyl) transferase. PARP14 transfers a negatively charged ADP-ribose unit from a donor NAD+ molecule onto a target protein, post-translationally. PARP14's domain architecture consists of three macrodomains (Macro1, Macro2 and Macro3), a WWE domain and an ARTD (or catalytic domain).

View Article and Find Full Text PDF

Phosphoglucose isomerase/autocrine motility factor (PGI/AMF) is secreted by tumors and influences tumor growth and metastasis. In order to investigate the effects of silencing PGI/AMF on the migration and the sphere forming abilities of human glioblastoma U87 cells, as well as on the side population cells (SPCs), PGI/AMF was silenced using siRNA. Western blot analysis and RT-qPCR were used to assess the expression of PGI/AMF, Akt and SRY (sex determining region Y)-box 2 (SOX2).

View Article and Find Full Text PDF

Down-regulation of phosphoglucose isomerase/autocrine motility factor enhances gensenoside Rh2 pharmacological action on leukemia KG1α cells.

Asian Pac J Cancer Prev

November 2014

Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China E-mail :

Aims And Background: Ginsenoside Rh2, which exerts the potent anticancer action both in vitro and in vivo, is one of the most well characterized ginsenosides extracted from ginseng. Although its effects on cancer are significant, the underlying mechanisms remain unknown. In this study, we sought to elucidate possible links between ginsenoside Rh2 and phosphoglucose isomerase/autocrine motility factor (PGI/AMF).

View Article and Find Full Text PDF

Phosphoglucose isomerase/autocrine motility factor (PGI/AMF) plays an important role in glycolysis and gluconeogenesis and is associated with invasion and metastasis of cancer cells. We have previously shown its role in the induction of epithelial-mesenchymal transition (EMT) in breast cancer cells, which led to increased aggressiveness; however, the molecular mechanism by which PGI/AMF regulates EMT is not known. Here we show, for the first time, that PGI/AMF overexpression led to an increase in the DNA-binding activity of NF-κB, which, in turn, led to increased expression of ZEB1/ZEB2.

View Article and Find Full Text PDF

Re-programming of metabolic pathways is a hallmark of physiological changes in cancer cells. The expression of certain genes that directly control the rate of key metabolic pathways including glycolysis, lipogenesis and nucleotide synthesis are drastically altered at different stages of tumor progression. These alterations are generally considered as an adaptation of tumor cells; however, they also contribute to the progression of tumor cells to become more aggressive phenotypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!